Skip to main content

Domain-Engineered Ferroelectric Crystals for Nonlinear and Quantum Optics

  • Chapter
Ferroelectric Crystals for Photonic Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

  • 1303 Accesses

Abstract

Nonlinear optics studies the class of phenomena occurring when an intense light field, typically from a laser source, modifies the optical properties of a transparent material in a nonlinear way. The polarization \(\vec{P}(\vec{x},t)\) of the material can be written as a power series in the field strength \(\vec {E}(\vec{x},t)\) :

$$\vec{P}=\chi^{(1)}\vec{E}+\chi^{(2)}\vec{E}^{2}+\chi^{(3)}\vec{E}^{3}+\cdots $$

where χ (i) is the i-order optical susceptibility of the material. Nonlinear phenomena arise from the nonzero value of the χ (2) susceptibility in noncentrosymmetric crystals. A large class of nonlinear materials (among them LN, KTP, BBO, and LBO) has been studied and used since 1960’s for up/down-conversion of the existing laser sources to wavelength regions which are not directly accessible otherwise. Some of these materials also belong to ferroelectrics, and this feature can be exploited to engineer the orientation of their nonlinear susceptibility. One of the earliest and most commonly used material is LiNbO3 (LN), because of its high nonlinear coefficient (d 33≈27 pm/V) and its wide transparency range from the UV to the mid IR (0.3÷5 μm). A technique giving access to d 33 in LN for optimizing nonlinear conversion processes, named quasi-phase-matching (QPM), was thought even before the first fabrication of this material. About 20 years later, the first experimental demonstration of this idea was obtained, and nowadays periodic poling of ferroelectrics crystals is a widely spread technology making these devices world-wide used and commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bloembergen, Nonlinear Optics, 4th edn. (World Scientific, Singapore, 1996)

    Book  MATH  Google Scholar 

  2. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, Amsterdam, 2003)

    Google Scholar 

  3. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 2002)

    Google Scholar 

  4. D.N. Nikogosyan, Nonlinear Optical Crystals (Springer, Berlin, 2005)

    Google Scholar 

  5. G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, A. Savage, LiNbO3: an efficient phase matchable nonlinear optical material. Appl. Phys. Lett. 5, 234 (1964)

    Article  ADS  Google Scholar 

  6. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962)

    Article  ADS  Google Scholar 

  7. D. Feng, N.-B. Ming, J.-F. Hong, Y.-S. Yang, J.-S. Zhu, Z. Yang, Y.-N. Wang, Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett. 37, 607 (1980)

    Article  ADS  Google Scholar 

  8. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  9. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser. Appl. Phys. Lett. 89, 091121 (2006)

    Article  ADS  Google Scholar 

  10. J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden, M. Razeghi, High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼4.8 μm. Appl. Phys. Lett. 87, 041104 (2005)

    Article  ADS  Google Scholar 

  11. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J.A. Mitchell, L. Hollberg, Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers. Appl. Phys. B 70, 747 (2000)

    Article  ADS  Google Scholar 

  12. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Power-boosted difference-frequency source for high-resolution infrared spectroscopy. Appl. Phys. B 76, 473 (2003)

    Article  ADS  Google Scholar 

  13. P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy. Appl. Phys. B 80, 141 (2005)

    Article  ADS  Google Scholar 

  14. A. Clairon, B. Dahmani, A. Filimon, J. Rutman, Precise frequency measurements of CO2/OsO4 and He–Ne/CH4-stabilized lasers. IEEE Trans. Instrum. Meas. 34, 265 (1985)

    Article  ADS  Google Scholar 

  15. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  16. T. Udem, S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg, Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett. 86, 4996 (2001)

    Article  ADS  Google Scholar 

  17. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000)

    Article  ADS  Google Scholar 

  18. S.T. Cundiff, J. Ye, Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  19. S. Witte, R.T. Zinkstok, W. Ubachs, W. Hogervorst, K.S.E. Eikema, Deep-ultraviolet quantum interference metrology with ultrashort laser pulses. Science 307, 400 (2005)

    Article  ADS  Google Scholar 

  20. R. Jason Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005)

    Article  ADS  Google Scholar 

  21. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234 (2005)

    Article  ADS  Google Scholar 

  22. I. Thomann, A. Bartels, K.L. Corwin, N.R. Newbury, L. Hollberg, S.A. Diddams, J.W. Nicholson, M.F. Yan, 420-MHz Cr:forsterite femtosecond ring laser and continuum generation in the 1–2-μm range. Opt. Lett. 28, 1368 (2003)

    Article  ADS  Google Scholar 

  23. S.M. Foreman, A. Marian, J. Ye, E.A. Petrukhin, M.A. Gubin, O.D. Mücke, F.N.C. Wong, E.P. Ippen, F.X. Kärtner, Demonstration of a He–Ne/CH4-based optical molecular clock. Opt. Lett. 30, 570 (2005)

    Article  ADS  Google Scholar 

  24. A. Amy-Klein, H. Vigué, C. Chardonnet, Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid. J. Mol. Spectrosc. 228, 206 (2004)

    Article  ADS  Google Scholar 

  25. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, M. Prevedelli, Frequency-comb-based absolute frequency measurements in the mid-IR with a difference-frequency spectrometer. Opt. Lett. 30, 997 (2005)

    Article  ADS  Google Scholar 

  26. D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, P. De Natale, A comb-referenced difference-frequency spectrometer for cavity ring-down spectroscopy in the 4.5-μm region. J. Opt. A 8, S490 (2006)

    Article  ADS  Google Scholar 

  27. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, Mid-infrared fiber-based optical comb. New J. Phys. 8, 262 (2006)

    Article  ADS  Google Scholar 

  28. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, H.C. Liu, The Doppler-splitting method for the ground vibrational state. IEEE J. Sel. Top. Quantum Electron. 6, 931 (2000)

    Article  Google Scholar 

  29. M.J. Thorpe, K.D. Moll, R. Jason Jones, B. Safdi, J. Ye, Broadband cavity ring-down spectroscopy for sensitive and rapid molecular detection. Science 311, 1595 (2006)

    Article  ADS  Google Scholar 

  30. F. Keilmann, C. Gohle, R. Holzwarth, Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542 (2004)

    Article  ADS  Google Scholar 

  31. A. Marian, M.C. Stowe, J.R. Lawall, D. Felinto, J. Ye, United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063 (2004)

    Article  ADS  Google Scholar 

  32. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, Two-tone frequency modulation spectroscopy for in-situ trace gas detection using a portable difference-frequency source. Appl. Phys. B 85, 219 (2006)

    Article  ADS  Google Scholar 

  33. D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information (Springer, Cambridge, 2000)

    MATH  Google Scholar 

  34. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  35. N. Gisin, G.G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Modern Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  36. A. Migdall, Correlated-photon metrology without absolute standards. Phys. Today 52(1), 41 (1999)

    Article  ADS  Google Scholar 

  37. C.M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  38. S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  39. A. Furusawa, J.L. Sorensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  40. L.-A. Wu, M. Xiao, H.J. Kimble, Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 4, 1465 (1987)

    Article  ADS  Google Scholar 

  41. R.E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M.J. Potasek, Pulsed squeezed light. Phys. Rev. Lett. 59, 2566 (1987)

    Article  ADS  Google Scholar 

  42. D.K. Serkland, M.M. Fejer, R.L. Byer, Y. Yamamoto, Squeezing in a quasi-phase-matched LiNbO3 waveguide. Opt. Lett. 20, 1649 (1995)

    Article  ADS  Google Scholar 

  43. M.E. Anderson, M. Beck, M.G. Raymer, J.D. Bierlein, Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides. Phys. Rev. Lett. 20, 620 (1995)

    Google Scholar 

  44. T. Hirano, K. Kotani, T. Ishibashi, S. Okude, T. Kuwamoto, 3 dB squeezing by single-pass parametric amplification in a periodically poled KTiOPO4 crystal. Opt. Lett. 30, 1722 (2005)

    Article  ADS  Google Scholar 

  45. K. Schneider, M. Lang, J. Mlynek, S. Schiller, Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Express 2, 59 (1998)

    Article  ADS  Google Scholar 

  46. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 4321 (2007)

    Article  ADS  Google Scholar 

  47. G. Hetet, O. Gloeckl, K.A. Pilypas, C.C. Harb, B.C. Buchler, H.-A. Bachor, P.K. Lam, Squeezed light for bandwidth-limited atom optics experiments at the rubidium D 1 line. J. Phys. B 40, 221 (2007)

    Article  ADS  Google Scholar 

  48. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594 (2002)

    Article  ADS  Google Scholar 

  49. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999)

    Article  ADS  Google Scholar 

  50. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290 (2000)

    Article  ADS  Google Scholar 

  51. D.C. Burnham, D.L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84 (1970)

    Article  ADS  Google Scholar 

  52. C.K. Hong, L. Mandel, Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58 (1986)

    Article  ADS  Google Scholar 

  53. A.I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001)

    Article  ADS  Google Scholar 

  54. A. Zavatta, S. Viciani, M. Bellini, Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A 70, 053821 (2004)

    Article  ADS  Google Scholar 

  55. A. Zavatta, S. Viciani, M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  56. V. Parigi, A. Zavatta, M. Kim, M. Bellini, Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890 (2007)

    Article  ADS  Google Scholar 

  57. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  58. I. Marcikic, H. De Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002)

    Article  ADS  Google Scholar 

  59. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, M. Legre, N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  60. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, N. Gisin, PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155 (2002)

    ADS  Google Scholar 

  61. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, N. Gisin, Highly efficient photon-pair source using a periodically-poled lithium niobate waveguide. Electron. Lett. 37, 26 (2001)

    Article  Google Scholar 

  62. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116 (2005)

    Article  ADS  Google Scholar 

  63. K. Sanaka, K. Kawahara, T. Kuga, New high-efficiency source of photon pairs for engineering quantum entanglement. Phys. Rev. Lett. 86, 5620 (2001)

    Article  ADS  Google Scholar 

  64. B.S. Shi, A. Tomita, Highly efficient generation of pulsed photon pairs using a bulk periodically poled potassium titanyl phosphate. J. Opt. Soc. Am. B 12, 2081 (2004)

    Article  ADS  Google Scholar 

  65. A.B. U’Ren, C. Silberhorn, K. Banaszek, I.A. Walmsley, Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004)

    Article  ADS  Google Scholar 

  66. A.J. Miller, S.W. Nam, J.M. Martinis, A.V. Sergienko, Demonstration of low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791 (2003)

    Article  ADS  Google Scholar 

  67. M.A. Albota, F.N.C. Wong, Efficient single-photon counting at 1.55 μm by means of frequency up-conversion. Opt. Lett. 29, 1449 (2004)

    Article  ADS  Google Scholar 

  68. A.P. van Devender, P.G. Kwiat, High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433 (2004)

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellini, M. et al. (2009). Domain-Engineered Ferroelectric Crystals for Nonlinear and Quantum Optics. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77965-0_11

Download citation

Publish with us

Policies and ethics