Skip to main content

Activatable Tiles: Compact, Robust Programmable Assembly and Other Applications

  • Conference paper
DNA Computing (DNA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Included in the following conference series:

Abstract

While algorithmic DNA self-assembly is, in theory, capable of forming complex patterns, its experimental demonstration has been limited by significant assembly errors. In this paper we describe a novel protection/deprotection strategy to strictly enforce the direction of tiling assembly growth to ensure the robustness of the assembly process. Tiles are initially inactive, meaning that each tile’s output pads are protected and cannot bind with other tiles. After other tiles bind to the tile’s input pads, the tile transitions to an active state and its output pads are exposed, allowing further growth. We prove that an activatable tile set is an instance of a compact, error-resilient and self-healing tile-set. We also describe a DNA design for activatable tiles and a deprotection mechanism using DNA polymerase enzymes and strand displacement. We conclude with a discussion on some applications of activatable tiles beyond computational tiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winfree, E.: Algorithmic Self-Assembly of DNA Caltech (1998)

    Google Scholar 

  2. Dirks, R.M., Pierce, N.A.: PNAS 101(43), 15275–15278 (2004)

    Google Scholar 

  3. Wang, H.: Bell System Tech Journal 40(1), 1–41 (1961)

    Google Scholar 

  4. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Nano Letters 5(12), 2586–2592

    Google Scholar 

  5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: PLoS Biology 2 (12), 424 (2004)

    Google Scholar 

  6. Reif, J.H., Sahu, S., Yin, P.: DNA10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005)

    Google Scholar 

  7. Chen, H.L., Goel, A.: DNA 10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)

    Google Scholar 

  8. Winfree, E., Bekbolatov, R.: DNA 9. In: Chen, J., Reif, J.H. (eds.) DNA Computing. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Google Scholar 

  9. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: Science 301(5641), 1882–1884 (2003)

    Google Scholar 

  10. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Google Scholar 

  11. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Nature 394 (1998)

    Google Scholar 

  12. Thompson, B.J., Camien, M.N., Warner, R.C.: PNAS 73(7), 2299–2303 (July 1976)

    Google Scholar 

  13. http://www.cs.duke.edu/~reif/paper/urmi/activatable/activatable.pdf

  14. Soloveichik, D., Winfree, E.: SICOMP 36(6), 1544–1569 (2007)

    Google Scholar 

  15. Winfree, E.: Simulations of Computing by Self-Assembly Caltech CS Report, 22 (1998)

    Google Scholar 

  16. Sahu, S., Reif, J.H.: DNA 12. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 223–238. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Saturno, J., Blanco, L., Salas, M., Esterban, J.A: J. Bio. Chem. 270(52), 31235–31243 (1995)

    Google Scholar 

  18. Thompson, B.J., Escarmis, C., Parker, B., Slater, W.C., Doniger, J., Tessman, I., Warner, R.C.: J. Mol. Biol. 91, 409–419 (1975)

    Google Scholar 

  19. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Proceedings of STOC. pp. 740–748 (2001)

    Google Scholar 

  20. Schulman, R., Winfree, E.: DNA 10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 319–328. Springer, Heidelberg (2005)

    Google Scholar 

  21. Grothues, D., Cantor, C.R., Smith, C.L.: Nuc. Acid. Res. 21(5), 1321–1322 (1993)

    Google Scholar 

  22. Rosenbaum, D.M., Liu, D.R.: J. Am. Chem. Soc. 125, 13924–13925 (2003)

    Google Scholar 

  23. Fujibayashi, K., Murata, S.: DNA 10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 113–127. Springer, Heidelberg (2005)

    Google Scholar 

  24. Fujibayashi, K., Zhang, D., Winfree, E., Murata, S.: In submission

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Majumder, U., LaBean, T.H., Reif, J.H. (2008). Activatable Tiles: Compact, Robust Programmable Assembly and Other Applications. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics