Skip to main content

Threshold Accepting Approach to Improve Bound-based Approximations for Portfolio Optimization

  • Chapter

Abstract

A discretization scheme for a portfolio selection problem is discussed. The model is a benchmark relative, mean-variance optimization problem in continuous time. In order to make the model computationally tractable, it is discretized in time and space. This approximation scheme is designed in such a way that the optimal values of the approximate problems yield bounds on the optimal value of the original problem. The convergence of the bounds is discussed as the granularity of the discretization is increased. A threshold accepting algorithm that attempts to find the most accurate discretization among all discretizations of a given complexity is also proposed. Promising results of a numerical case study are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ash, R.B.: 1972, Real Analysis and Probability, Probability and Mathematical Statistics, Academic Press, Berlin.

    Google Scholar 

  • Birge, J.R. and Louveaux, F.: 1997, Introduction to Stochastic Programming, Springer-Verlag, New York.

    Google Scholar 

  • Dueck, G. and Scheuer, T.: 1990, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing, J. Comput. Phys. 90(1), 161–175.

    Article  Google Scholar 

  • Dupacová, J.: 1966, On minimax solutions of stochastic linear programming problems, Casopis pro Pestování Matematiky 91, 423–429.

    Google Scholar 

  • Edirisinghe, N.C.P. and Ziemba, W.T.: 1994a, Bounding the expectation of a saddle function with application to stochastic programming, Math. Oper. Res. 19, 314–340.

    Article  Google Scholar 

  • Edirisinghe, N.C.P. and Ziemba, W.T.: 1994b, Bounds for two-stage stochastic programs with fixed recourse, Math. Oper. Res. 19, 292–313.

    Google Scholar 

  • Frauendorfer, K.: 1994, Multistage stochastic programming: Error analysis for the convex case, Z. Oper. Res. 39(1), 93–122.

    Google Scholar 

  • Frauendorfer, K.: 1995, The stochastic programming extension of the Markowitz model, Int. J. Neural Mass-Parallel Comput. Inform. Syst. 5, 449–460.

    Google Scholar 

  • Frauendorfer, K.: 1996, Barycentric scenario trees in convex multistage stochastic programming, Math. Program. 75(2), 277–294.

    Article  Google Scholar 

  • Frauendorfer, K. and Siede, H.: 2000, Portfolio selection using multi-stage stochastic programming, Central European J. Oper. Res. 7, 277–290.

    Google Scholar 

  • Gertz, E.M. and Wright, S.J.: 2003, Object-oriented software for quadratic programming, A CM Trans. Math. Software 29(1), 58–81.

    Article  Google Scholar 

  • Gilli, M. and Këllezi, E.: 2002, The Threshold Accepting Heuristic for Index Tracking, in P. Pardalos and V.K. Tsitsiringos (eds), Financial Engineering, E-Commerce and Supply Chain, Applied Optimization Series, Kluwer Academic Publishers, Boston, pp. 1–18.

    Google Scholar 

  • Gilli, M., Këllezi, E. and Hysi, H.: 2006, A data-driven optimization heuristic for downside risk minimization, Journal of Risk 8(4), 1–18.

    Google Scholar 

  • Gilli, M. and Winker, P.: 2007, Heuristic optimization methods in econometrics, in E.J. Kontoghiorghes and D. Belsley (eds), Handbook of Computational Econometrics, Handbooks series of Computing and Statistics with Applications, Elsevier. In preparation.

    Google Scholar 

  • Gülpinar, N. and Rustern, B.: 2006, Worst-case robust decisions for multiperiod mean-variance portfolio optimization, European J. Oper. Res.. In press.

    Google Scholar 

  • Gülpinar, N., Rustem, B. and Settergren, R.: 2002, Multistage stochastic programming in computational finance, in E. J. Kontoghiorghes, B. Rustem and S. Siokos (eds), Computational Methods in Decision-Making, Economics and Finance, Vol. 74 of Applied Optimization, Kluwer Academic Publishers, pp. 33–45.

    Google Scholar 

  • Gülpinar, N., Rustem, B. and Settergren, R.: 2004, Optimization and sinmulation approaches to scenario tree generation, J. Econ. Dyn. Control 28(7), 1291–1315.

    Article  Google Scholar 

  • Hochreiter, R. and Pflug, G.C.: 2007, Financial scenario generation for stochastic multi-stage decision processes as facility location problems, Ann. Oper. Res. 156(1), 257–272.

    Article  Google Scholar 

  • Kall, P. and Wallace, S.W.: 1994, Stochastic Programming, John Wiley & Sons, Chichester.

    Google Scholar 

  • Kuhn, D.: 2007a, Aggregation and discretization in multistage stochastic programming, Math. Program. A. Online First.

    Google Scholar 

  • Kuhn, D.: 2007b, Convergent bounds for stochastic programs with expected value constraints, The Stochastic Programming E-Print Series (SPEPS).

    Google Scholar 

  • Madansky, A.: 1960, Inequalities for stochastic linear programming problems, Manage. Sci. 6, 197–204.

    Google Scholar 

  • Markowitz, H.M.: 1952, Portfolio selection, Journal of Finance 7(1), 77–91.

    Article  Google Scholar 

  • Merton, R.C.: 1992, Continuous Time Finance, Basil Blackwell, Cambridge, MA.

    Google Scholar 

  • Rockafellar, R.T. and Wets, R.J.-B.: 1978, The optimal recourse problem in discrete time: L1-multipliers for inequality constraints, SIAM J. Control Optimization 16, 16–36.

    Article  Google Scholar 

  • Rosenblatt, M.: 1952, Remarks on a multivariate transformation, Ann. Math. Stat. 23(3), 470–472.

    Article  Google Scholar 

  • Steinbach, M.C.: 2001, Markowitz revisited: mean-variance models in financial portfolio analysis, SIAM Rev. 43(1), 31–85.

    Article  Google Scholar 

  • Wright, S.E.: 1994, Primal-dual aggregation and disaggregation for stochastic linear programs, Math. Oper. Res. 19(4), 893–908.

    Google Scholar 

  • Zhou, X.Y. and Li, D.: 2000, Continuous time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim. 42, 19–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhn, D., Parpas, P., Rustem, B. (2008). Threshold Accepting Approach to Improve Bound-based Approximations for Portfolio Optimization. In: Kontoghiorghes, E.J., Rustem, B., Winker, P. (eds) Computational Methods in Financial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77958-2_1

Download citation

Publish with us

Policies and ethics