Skip to main content

Function-Based Reasoning for Goal-Oriented Image Segmentation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4760))

Abstract

Function-based object recognition provides the framework to represent and reason about object functionality as a means to recognize novel objects and produce plans for interaction with the world. When function can be perceived visually, function-based computer vision is consistent with Gibson’s theory of affordances. Objects are recognized by their functional attributes. These attributes can be segmented out of the scene and given symbolic labels which can then be used to guide the search space for additional functional attributes. An example of such affordance-driven scene segmentation would be the process of attaching symbolic labels to the areas that afford sitting (functional seats) and using these areas to guide parameter selection for deriving nearby surfaces that potentially afford back support. The Generic Recognition Using Form and Function (G ruff) object recognition system reasons about and generates plans for understanding 3-D scenes of objects by performing such a functional attribute-based labelling process. An avenue explored here is based on a novel approach of autonomously directing image acquisition and range segmentation by determining the extent to which surfaces in the scene meet specified functional requirements, or provide affordances associated with a generic category of objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Working notes of AAAI-93 Workshop on Reasoning About Function, Washington, D.C. (July 12, 1993)

    Google Scholar 

  2. Working notes of AAAI-94 Workshop on Representing and Reasoning About Device Function, Seattle, Washington (August 3, 1994)

    Google Scholar 

  3. Aloimonos, Y.: Active Perception. Advances in Computer Vision series, vol. I. Lawrence Erlbaum Associates, Mahwah (1993)

    Google Scholar 

  4. Binford, T.O.: Survey of model-based image analysis systems. International Journal of Robotics Research 1, 18–64 (1982)

    Article  Google Scholar 

  5. Bogoni, L., Bajcsy, R.: Interactive recognition and representation of functionality. Computer Vision and Image Understanding , special issue on Functionality in Object Recognition 62(2), 194–214 (1995)

    MATH  Google Scholar 

  6. Christensen, H.I., Bowyer, K.W., Bunke, H.: Active Robot Vision. Scientific Press, Singapore (1993)

    MATH  Google Scholar 

  7. Connell, J.H.: Get me that screwdriver! Developing a sensory-action vocabulary for fetch-and-carry tasks. IBM Cyber Journal Research Report RC 19473 (April 1994)

    Google Scholar 

  8. Cooper, P., Birnbaum, L., Brand, E.: Causal scene understanding. Computer Vision and Image Understanding, special issue on Functionality in Object Recognition 62(2), 215–231 (1995)

    MATH  Google Scholar 

  9. Di Manzo, M., Trucco, E., Giunchiglia, F., Ricci, F.: FUR: Understanding FUnctional Reasoning. International Journal of Intelligent Systems 4, 431–457 (1989)

    Article  Google Scholar 

  10. Fitzpatrick, P., Metta, G., Natale, L., Rao, S., Sandini, G.: Learning about objects through action - initial steps towards artificial cognition. In: ICRA. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan (May 2003)

    Google Scholar 

  11. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston, MA (1979)

    Google Scholar 

  12. Green, K., et al.: Generic recognition of articulated objects through reasoning about potential function. Computer Vision and Image Understanding , special issue on Functionality in Object Recognition 62(2), 177–193 (1995)

    MATH  Google Scholar 

  13. Hanson, A., Riseman, E.: The VISIONS image-understanding system. In: Brown, C. (ed.) Advances in Computer Vision I, Erlbaum, Hillsdale, NJ, pp. 1–114 (1988)

    Google Scholar 

  14. Hodges, J.: Functional and physical object characteristics and object recognition in improvisation. Computer Vision and Image Understanding, special issue on Functionality in Object Recognition 62(2), 147–163 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Hoover, A., Golgof, D., Bowyer, K.: Egomotion estimation of a range camera using the space envelope. IEEE Transactions on Systems, Man, and Cybernetics, Part B 33(4), 717–721 (2003)

    Article  Google Scholar 

  16. Hutchinson, S., Hager, G.D., Corke, P.: Visual servoing: A tutorial. IEEE Transactions on Robotics and Automation 12(5) (1996)

    Google Scholar 

  17. Jain, A., Dorai, C.: 3-D object recognition: Representation and matching. Statistics and Computing 10(2), 167–182 (2000)

    Article  Google Scholar 

  18. Kim, D., Nevatia, R.: A method for recognition and localization of generic objects for indoor navigation. In: IEEE Workshop on Applications of Computer Vision, pp. 280–288 (1994)

    Google Scholar 

  19. Kise, K., Hattori, H., Kitahashi, T., Fukunaga, K.: Representing and recognizing simple hand-tools based on their functions. In: Asian Conference on Computer Vision, Osaka, Japan, pp. 656–659 (November 1993)

    Google Scholar 

  20. Konolige, K., Beymer, D.: SRI Small Vision System: User’s Manual Software Version 3.0a. SRI International (September 2003)

    Google Scholar 

  21. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lapierre, I., Laurgeau, C.: A road scene understanding system based on a blackboard architecture. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition, pp. 571–585. World Scientific, Singapore (1992)

    Google Scholar 

  23. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  24. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  25. Maki, A., Nordlund, P., Eklundh, J.: Attentional scene segmentation: Integrating depth and motion. Computer Vision and Image Understanding 78(3), 351–373 (2000)

    Article  Google Scholar 

  26. Maver, J., Bajcsy, R.: Occlusions as a guide to planning the next view. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5), 417–433 (1993)

    Article  Google Scholar 

  27. Minsky, M.: The Society of Mind. Simon and Shuster, New York (1985)

    Google Scholar 

  28. Rimey, R.D., Brown, C.M.: Control of selective perception using Bayes nets and decision theory. International Journal of Computer Vision, special issue on Active Vision 12, 173–207 (1994)

    Google Scholar 

  29. Rivlin, E., Rosenfeld, A., Perlis, D.: Recognition of object functionality in goal-directed robotics. In: Working Notes on Reasoning About Function, pp. 126–130 (1993)

    Google Scholar 

  30. Rivlin, E., Dickinson, S., Rosenfeld, A.: Recognition by functional parts. Computer Vision and Image Understanding, special issue on Functionality in Object Recognition 62(2), 164–176 (1995)

    MATH  Google Scholar 

  31. Rivlin, E., Rosenfeld, A.: Navigational functionalities. Computer Vision and Image Understanding, special issue on Functionality in Object Recognition 62(2), 232–244 (1995)

    MATH  Google Scholar 

  32. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Upper Saddle River (2001)

    Google Scholar 

  33. Stansfield, R.A.: Robotic grasping of unknown objects: A knowledge-based approach. International Journal of Robotics Research 10, 314–326 (1991)

    Article  Google Scholar 

  34. Stark, L., Bowyer, K.W.: Achieving generalized object recognition through reasoning about association of function to structure. IEEE Transactions on Pattern Analysis and Machine Intelligence 3(10), 1097–1104 (1991)

    Article  Google Scholar 

  35. Stark, L., Bowyer, K.W.: Indexing function-based categories for generic object recognition. In: CVPR 1992. Computer Vision and Pattern Recognition, Champaign, Illinois, pp. 795–797 (June 1992)

    Google Scholar 

  36. Stark, L., Hall, L.O., Bowyer, K.W.: Methods for Combination of Evidence in Function-Based 3-D Object Recognition. International Journal of Pattern Recognition and Artificial Intelligence 7(3), 573–594 (1993)

    Google Scholar 

  37. Stark, L., Bowyer, K.W., Hoover, A.W., Goldgof, D.B.: Recognizing object function through reasoning about partial shape descriptions and dynamic physical properties. Proceedings of the IEEE 84(11), 1640–1656 (1996)

    Article  Google Scholar 

  38. Stark, L., Bowyer, K.: Generic Object Recognition using Form and Function. Series in Machine Perception Artificial Intelligence, vol. 10. World Scientific, New York (1996)

    MATH  Google Scholar 

  39. Sutton, M., Stark, L., Bowyer, K.W.: Function-based generic recognition for multiple object categories. In: Jain, A.K., Flynn, P.J. (eds.) Three-dimensional Object Recognition Systems, pp. 447–470. Elsevier Science Publishers, Amsterdam (1993)

    Google Scholar 

  40. Sutton, M.A., Stark, L., Bowyer, K.: GRUFF-3: Generalizing the domain of a function-based recognition system. Pattern Recognition 27(12), 1743–1766 (1994)

    Article  Google Scholar 

  41. Sutton, M., Stark, L., Bowyer, K.W.: Function from visual analysis and physical interaction: A methodology for recognition of generic classes of objects. Image and Vision Computing 16(11), 745–763 (1998)

    Article  Google Scholar 

  42. Winston, P., Binford, T., Katz, B., Lowry, M.: Learning physical description from functional definitions, examples, and precedents. In: AAAI 1983, pp. 433–439 (1983)

    Google Scholar 

  43. Winston, P., Rao, S.: Repairing learned knowledge using experience. In: Winston, P.H., Shellard, S.A. (eds.) AI at MIT: Expanding Frontiers, pp. 363–379. MIT Press, Cambridge (1990)

    Google Scholar 

  44. Clarke, F., Ekeland, I.: SAMPLE. Arch. Rat. Mech. Anal. 78, 315–333 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erich Rome Joachim Hertzberg Georg Dorffner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutton, M.A., Stark, L. (2008). Function-Based Reasoning for Goal-Oriented Image Segmentation. In: Rome, E., Hertzberg, J., Dorffner, G. (eds) Towards Affordance-Based Robot Control. Lecture Notes in Computer Science(), vol 4760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77915-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77915-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77914-8

  • Online ISBN: 978-3-540-77915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics