A Fast Algorithm to Calculate Powers of a Boolean Matrix for Diameter Computation of Random Graphs

  • Md. Abdur Razzaque
  • Choong Seon Hong
  • M. Abdullah-Al-Wadud
  • Oksam Chae
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4921)


In this paper, a fast algorithm is proposed to calculate kth power of an n×n Boolean matrix that requires O(kn3p) addition operations, where p is the probability that an entry of the matrix is 1. The algorithm generates a single set of inference rules at the beginning. It then selects entries (specified by the same inference rule) from any matrix Ak − 1 and adds them up for calculating corresponding entries of Ak. No multiplication operation is required. A modification of the proposed algorithm can compute the diameter of any graph and for a massive random graph, it requires only O(n2(1-p)E[q]) operations, where q is the number of attempts required to find the first occurrence of 1 in a column in a linear search. The performance comparisons say that the proposed algorithms outperform the existing ones.


Boolean Matrix Random Graphs Adjacency Matrix  Graph Diameter Computational Complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auber, D., Delest, M., Domenger, J., Dulucq, S.: Efficient drawing of RNA secondary structure. Journal of Graph Algorithms and Applications 10(2) (2006)Google Scholar
  2. 2.
    Li, N., Guo, Y., Zheng, S., Tian, C., Zheng, J.: A matrix based fast calculation algorithm for estimating network capacity of MANETS. In: Proceedings of the 2005 Systems Communications (ICW), IEEE Computer Society, Los Alamitos (2005)Google Scholar
  3. 3.
    Zhou, M., Cui, Y.: Constructing and visualizing gene relation networks, An International Journal on Computational Molecular Biology (2004) ISBN In Silico Biology, 4, 0026Google Scholar
  4. 4.
    Lipschutz, S.: Data Structures and Algorithm. In: Schaum’s outline series, Mc-Graw Hill, New York (2000)Google Scholar
  5. 5.
    Strassen, V.: Gaussian elimination is not optimal. Numerical Mathematics 13, 354–356 (1969)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Burgisser, P., Clausen, M., Shokrollahi, M.A.: Algebric complexity theory, Grundlehren der Mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. of Symbolic Computation 9, 251–280 (1990)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bilardi, G., D’Alberto, P., Nicolau, A.: Fractal matrix multiplication: A case study on probability of cache performance. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 26–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Robinson, S.: Toward an optimal algorithm for matrix multiplication. SIAM news 38(9) (2005)Google Scholar
  10. 10.
    Bollobas, B.: The diameter of random graphs. IEEE Trans. Inform. Theory 36(2), 285–288 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Floyd, Robert, W.: Algorithm 97: shortest path. Communications of the ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  12. 12.
    Cormen, T.H., Leiserson, C.E., Ronald, L.R.: Introduction to Algorithms, 2nd edn. The MIT press and McGraw-Hill book company, Cambridge (2001)MATHGoogle Scholar
  13. 13.
    Bollobas, B.: The Evolution of Sparse Graphs. In: Graph Theory and Combinatorics, pp. 35–57. Academic Press, London-New York (1984)Google Scholar
  14. 14.
    Aiello, W., Chung, F., Lu, L.: Random Evolution of Massive Graphs. In: Handbook of Massive Data Sets, pp. 97–122. Kluwer, Dordrecht (2002)Google Scholar
  15. 15.
    Lu, L.: The diameter of random massive graphs. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.912–921. ACM/SIAM Press (2000)Google Scholar
  16. 16.
    Marinari, E., Semerjian, G.: On the number of circuits in random graphs, J. of Statistical Mechanics: Theory and Experiment, P06019 (2006) DOI:10.1088/1742 5468/2006/06/P06019Google Scholar
  17. 17.
    Ross, S.M.: Introduction to Probability Models, 8th edn. Academic Press, London (2002)Google Scholar
  18. 18.
    Bertsekas, D., Gallager, R.: Data Netwroks, ex. 2.13, 2nd edn. Prentice Hall, New Jersey (1992)Google Scholar
  19. 19.
    Yates, R.D., Goodman, D.J.: Probability and Stochastic Processes, B.6 (2005)Google Scholar
  20. 20.
    Chung, F., Lu, L.: The diameter of sparse random graph. J. of Advances in Applied Mathematics 26(4), 257–279 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Md. Abdur Razzaque
    • 1
  • Choong Seon Hong
    • 1
  • M. Abdullah-Al-Wadud
    • 1
  • Oksam Chae
    • 1
  1. 1.Department of Computer EngineeringKyung Hee UniversityYongin-siSouth Korea

Personalised recommendations