Skip to main content

Abstract

Biological tissues are extremely complex three-dimensional (3D) structures with concomitant complicated mechanical function and mass transport characteristics. Tissue engineering seeks to recapitulate this complex structure and function using biomaterial scaffolds delivering therapeutic biologics such as cells, proteins, and genes for tissue reconstruction. It is clear that the biomaterial/biologic construct cannot replicate the complex tissue milieu, including multiple cell types interacting with numerous cytokines to produce extracellular matrices having hierarchical features exhibiting highly nonlinear, biphasic mechanical function. The biomaterial/biologic construct is, at best, a crude approximation to the normal tissue milieu. To improve the clinical potential of tissue engineering/regenerative medicine, we must be able to relate the goodness of this approximation to the success of tissue regeneration. In essence, we must be able to define relevant design criteria for tissue engineering therapies. For the scaffold, the focus of this chapter, the pertinent question becomes: “How closely does a biomaterial scaffold have to approximate the normal tissue structure, mechanical function, mass transport, and cell-matrix interaction as a function of time to achieve desired tissue reconstruction?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agawam CM, McKinney JS, Lanctot D, Athanasiou KA (2000) Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21:2443–2452

    Article  Google Scholar 

  2. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    PubMed  CAS  Google Scholar 

  3. Bakhvalov NS, Bogachev KY, Eglit ME (1996) Numerical calculation of effective elastic moduli for incompressible porous material. Mech Comp Mat 32:399–405

    Article  Google Scholar 

  4. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 150:263–270

    PubMed  Google Scholar 

  5. Boudriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning approaches toward scaffold engineering—a brief overview. Artif Organs 30:785–792

    Article  PubMed  CAS  Google Scholar 

  6. Brand RA (1992) Autonomous informational stability in connective tissues. Med Hypotheses 37:107–114

    Article  PubMed  CAS  Google Scholar 

  7. Brekke JH, Toth JM (1998) Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res 43:380–398

    Article  PubMed  CAS  Google Scholar 

  8. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554

    Article  PubMed  CAS  Google Scholar 

  9. Carter DR, Beaupre GS (2001) Skeletal function and form: mechanobiology of skeletal development, aging and regeneration, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  10. Cheung HY, Lau KT, Lu TP, Hui D (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Composites: Part B 38:291–300

    Article  CAS  Google Scholar 

  11. Chu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23:1283–1293

    Article  PubMed  CAS  Google Scholar 

  12. D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    Article  PubMed  CAS  Google Scholar 

  13. Domm C, Schunke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage 10:13–22

    Article  PubMed  CAS  Google Scholar 

  14. Eggli PS, Muller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res (232):127–138

    PubMed  CAS  Google Scholar 

  15. Filipczak K, Wozniak M, Ulanski P, Olah L, Przybytniak G, Olkowski RM, Lewandowska-Szumiel M, Rosiak JM (2006) Poly(epsilon-caprolactone) biomaterial sterilized by E-beam irradiation. Macromol Biosci 6:261–273

    Article  PubMed  CAS  Google Scholar 

  16. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, Berlin

    Google Scholar 

  17. Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603

    PubMed  Google Scholar 

  18. Gibiansky LV, Torquato S (1996) Connection between the conductivity and bulk modulus of isotropic composite materials. Proc R Soc Lond A 452:253–283

    Article  Google Scholar 

  19. Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed 8:63–75

    Article  PubMed  CAS  Google Scholar 

  20. Gloeckner DC, Sacks MS, Fraser MO, Somogyi GT, de Groat WC, Chancellor MB (2002) Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. J Urol 167:2247–2252

    Article  PubMed  Google Scholar 

  21. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  PubMed  CAS  Google Scholar 

  22. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA (2004) Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A 68:187–200

    Article  PubMed  CAS  Google Scholar 

  23. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  PubMed  CAS  Google Scholar 

  24. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Muller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173

    Article  PubMed  CAS  Google Scholar 

  25. Holzapfel GA, Ogden RW (2006) Mechanics of biological tissues. Springer, Berlin

    Google Scholar 

  26. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues and organs, 1st edn. Springer, Berlin

    Google Scholar 

  27. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124

    Article  PubMed  CAS  Google Scholar 

  28. Ichihara K, Taguchi T, Sakuramoto I, Kawano S, Kawai S (2003) Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J Neurosurg 99:278–285

    PubMed  Google Scholar 

  29. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–2504

    Article  PubMed  CAS  Google Scholar 

  30. Joshi MD, Suh JK, Marui T, Woo SL (1995) Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res 29:823–828

    Article  PubMed  CAS  Google Scholar 

  31. Kang Y, Yang J, Khan S, Anissian L, Ameer GA (2006) A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res A 77:331–339

    PubMed  Google Scholar 

  32. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  PubMed  CAS  Google Scholar 

  33. Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519

    Article  PubMed  CAS  Google Scholar 

  34. Klisch SM, Lotz JC (1999) Application of a fiber-reinforced continuum theory to multiple deformations of the annulus fibrosus. J Biomech 32:1027–1036

    Article  PubMed  CAS  Google Scholar 

  35. Leddy HA, Guilak F (2003) Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann Biomed Eng 31:753–760

    Article  PubMed  Google Scholar 

  36. Li J, Mak AF (2005) Hydraulic permeability of polyglycolic acid scaffolds as a function of biomaterial degradation. J Biomater Appl 19:253–266

    Article  PubMed  CAS  Google Scholar 

  37. Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K (2007) Bone ingrowth in titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820

    Article  PubMed  CAS  Google Scholar 

  38. Liu CZ, Xia ZD, Han ZW, Hulley PA, Triffitt JT, Czernuszka JT (2007) Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J Biomed Mater Res B Appl Biomater

    Google Scholar 

  39. Liu L, Xiong Z, Yan Y, Hu Y, Zhang R, Wang S (2007) Porous morphology, porosity, mechanical properties of poly(alpha-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J Biomed Mater Res A 82:618–629

    PubMed  Google Scholar 

  40. Loboa EG, Beaupre GS, Carter DR (2001) Mechanobiology of initial pseudarthrosis formation with oblique fractures. J Orthop Res 19:1067–1072

    Article  PubMed  CAS  Google Scholar 

  41. Malda J, van Blitterswijk CA, van Geffen M, Martens DE, Tramper J, Riesle J (2004) Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthritis Cartilage 12:306–313

    Article  PubMed  CAS  Google Scholar 

  42. Malda J, Woodfield TB, van der Vloodt F, Kooy FK, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2004) The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25:5773–5780

    Article  PubMed  CAS  Google Scholar 

  43. Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics, 1st edn. Springer, Berlin

    Google Scholar 

  44. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R et al (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–3237

    Article  PubMed  CAS  Google Scholar 

  45. Miller-Young JE, Duncan NA, Baroud G (2002) Material properties of the human calcaneal fat pad in compression: experiment and theory. J Biomech 35:1523–1531

    Article  PubMed  Google Scholar 

  46. Moroni L, de Wijn JR, van Blitterswijk CA (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27:974–985

    Article  PubMed  CAS  Google Scholar 

  47. Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6:162–167

    Article  PubMed  CAS  Google Scholar 

  48. Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics and mechano-biology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  49. Nerurkar NL, Elliott DM, Mauck RL (2007) Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25:1018–1028

    Article  PubMed  CAS  Google Scholar 

  50. Ng KW, Mauck RL, Statman LY, Lin EY, Ateshian GA, Hung CT (2006) Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct. Biorheology 43:497–507

    PubMed  Google Scholar 

  51. Okamoto M, Dohi Y, Ohgushi H, Shimaoka H, Ikeuchi M, Matsushima A, Yonemasu K, Hosoi H (2006) Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med 17:327–336

    Article  PubMed  CAS  Google Scholar 

  52. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900

    Article  PubMed  CAS  Google Scholar 

  53. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196

    PubMed  Google Scholar 

  54. Prendergast PJ, Huiskes R, Soballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548

    Article  PubMed  CAS  Google Scholar 

  55. Qiu H, Yang J, Kodali P, Koh J, Ameer GA (2006) A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27:5845–5854

    Article  PubMed  CAS  Google Scholar 

  56. Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120:757–763

    Article  PubMed  CAS  Google Scholar 

  57. Reynaud B, Quinn TM (2006) Anisotropic hydraulic permeability in compressed articular cartilage. J Biomech 39:131–137

    Article  PubMed  Google Scholar 

  58. Riddle KW, Mooney DJ (2004) Role of poly(lactide-co-glycolide) particle size on gas-foamed scaffolds. J Biomater Sci Polym Ed 15:1561–1570

    Article  PubMed  CAS  Google Scholar 

  59. Riha GM, Wang X, Wang H, Chai H, Mu H, Lin PH, Lumsden AB, Yao Q, Chen C (2007) Cyclic strain induces vascular smooth muscle cell differentiation from murine embryonic mesenchymal progenitor cells. Surgery 141:394–402

    Article  PubMed  Google Scholar 

  60. Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, Clemens TL (2005) Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37:313–322

    Article  PubMed  CAS  Google Scholar 

  61. Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR (2003) Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A 66:283–291

    Article  PubMed  CAS  Google Scholar 

  62. Sacks MS, Chuong CJ (1993) Biaxial mechanical properties of passive right ventricular free wall myocardium. J Biomech Eng 115:202–205

    Article  PubMed  CAS  Google Scholar 

  63. Sander EA, Nauman EA (2003) Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng 31:1–26

    Article  PubMed  Google Scholar 

  64. Schek RM, Wilke EN, Hollister SJ, Krebsbach PH (2006) Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials 27:1160–1166

    Article  PubMed  CAS  Google Scholar 

  65. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ (2003) Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech 36:1087–1096

    Article  PubMed  Google Scholar 

  66. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194

    Article  PubMed  CAS  Google Scholar 

  67. Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK (2006) Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci Polym Ed 17:969–984

    Article  PubMed  CAS  Google Scholar 

  68. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7:23–38

    Article  PubMed  CAS  Google Scholar 

  69. Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR (2006) Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 312:1693–1702

    Article  PubMed  CAS  Google Scholar 

  70. Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, Schaffler MB (2005) In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A 102:11911–11916

    Article  PubMed  CAS  Google Scholar 

  71. Weinberg EJ, Kaazempur-Mofrad MR (2006) A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics. J Biomech 39:1557–1561

    Article  PubMed  Google Scholar 

  72. Weiss JA, Maakestad BJ (2006) Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction. J Biomech 39:276–283

    Article  PubMed  Google Scholar 

  73. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827

    Article  PubMed  CAS  Google Scholar 

  74. Williams JR, Natarajan RN, Andersson GB (2007) Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. J Biomech 40:1981–1987

    Article  PubMed  Google Scholar 

  75. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ (2007) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28:45–54

    Article  PubMed  CAS  Google Scholar 

  76. Wu JZ, Cutlip RG, Andrew ME, Dong RG (2007) Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests. Skin Res Technol 13:34–42

    Article  PubMed  Google Scholar 

  77. Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830

    Article  PubMed  CAS  Google Scholar 

  78. Wu L, Zhang J, Jing D, Ding J (2006) “Wet-state” mechanical properties of three-dimensional polyester porous scaffolds. J Biomed Mater Res A 76:264–271

    PubMed  Google Scholar 

  79. Zakaria E, Lofthouse J, Flessner MF (1997) In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am J Physiol 273:H2774–2782

    CAS  Google Scholar 

  80. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Article  PubMed  CAS  Google Scholar 

  81. Zeng Z, Yin Y, Huang AL, Jan KM, Rumschitzki DS (2007) Macromolecular transport in heart valves. I. Studies of rat valves with horseradish peroxidase. Am J Physiol Heart Circ Physiol 292:H2664–2670

    Article  PubMed  CAS  Google Scholar 

  82. Zeng Z, Yin Y, Jan KM, Rumschitzki DS (2007) Macromolecular transport in heart valves. II. Theoretical models. Am J Physiol Heart Circ Physiol 292:H2671–2686

    Article  PubMed  CAS  Google Scholar 

  83. Zhang J, Wu L, Dianying J, Ding J (2005) A comparative study of porous scaffolds with cubic and spherical macropores. Polymer 46:4979–4985

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hollister, S., Liao, E., Moffitt, E., Jeong, C., Kemppainen, J. (2009). Defining Design Targets for Tissue Engineering Scaffolds. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics