Skip to main content

Development of Electromagnetic Particle Simulation Code in an Open System

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4759))

Abstract

In an electromagnetic particle simulation for magnetic reconnection in an open system, which has a free boundary condition, particles go out and come into the system through the boundary and the number of particles depends on time. Besides, particles are locally attracted due to physical condition. Accordingly, it is hard to realize an adequate load balance with domain decomposition. Furthermore, a vector performance does not become efficient without a large memory size due to a recurrence of array access. In this paper, we parallelise the code with High Performance Fortran. For data layout, all field data are duplicated on each parallel process, but particle data are distributed among them. We invent an algorithm for the open boundary of particles, in which an operation for outgoing and incoming particles is performed in each processor, and the only reduction operation for the number of particles is executed in data transfer. This adequate treatment makes the amount and frequency of data transfer small, and the load balance among processes relevant. Furthermore, a compiler-directive listvec in the gather process dramatically decreases the memory size and improves the vector performance. Vector operation ratio becomes about 99.5% and vector length turns 240 and over. It becomes possible to perform the simulation with 800 million particles in 512×128×64 meshes. We succeed in opening a path for a large-scale simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biskamp, D.: Magnetic Reconnection in Plasamas. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Drake, J.F., Lee, Y.C.: Kinetic theory of tearing instabilities. Phys. Fluids 20 (1977)

    Google Scholar 

  3. Ono, Y., Yamada, M., Akao, T., Tajima, T., Matsumoto, R.: Ion acceleration and direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76 (1996)

    Google Scholar 

  4. Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Trintchouk, F.: Experimental investigation of the neutral sheet profile during magnetic reconnection. Phys. Plasmas 7 (2000)

    Google Scholar 

  5. Hsu, S., Fiksel, G., Carter, T.A., Ji, H., Kulsrud, R.M., Yamada, M.: Local measurement of nonclassical ion heating during magnetic reconnection. Phys. Rev. Lett. 84 (2000)

    Google Scholar 

  6. Sato, T., Hayashi, T.: Externally driven magnetic reconnection and a powerful magnetic energy converter. Phys. Fluids 22 (1979)

    Google Scholar 

  7. Shay, M.A., Drake, J.F., Rogers, B.N., Denton, R.E.: Alfvnic collisionless magnetic reconnection and the hall term. J. Geophys. Res., [Space Phys.] 106 (2001)

    Google Scholar 

  8. Kuznetsova, M., Hesse, M., Winske, D.: Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations. J. Geophys. Res., [Space Phys.] 106 (2001)

    Google Scholar 

  9. Hesse, M., Birn, J., Kuznetsova, M.: Collisionless magnetic reconnection: Electron processes and transport modeling. J. Geophys. Res., [Space Phys.] 106 (2001)

    Google Scholar 

  10. Birn, J., Hesse, M.: Geospace environment modeling (gem) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and hall effects. J. Geophys. Res., [Space Phys.] 106 (2001)

    Google Scholar 

  11. Ma, Z.W., Bhattacharjee, A.: Hall magnetohydrodynamic reconnection: The geospace environment modeling challenge. J. Geophys. Res., [Space Phys.] 106 (2001)

    Google Scholar 

  12. Horiuchi, R., Sato, T.: Particle simulation study of driven magnetic reconnection in a collisionless plasma. Phys. Plasmas 1 (1994)

    Google Scholar 

  13. Horiuchi, R., Sato, T.: Particle simulation study of collisionless driven reconnection in a sheared magnetic field. Phys. Plasmas 4 (1997)

    Google Scholar 

  14. Pei, W., Horiuchi, R., Sato, T.: Long time scale evolution of collisionless driven reconnection in a two-dimensional open system. Phys. Plasmas 8 (2001)

    Google Scholar 

  15. Pei, W., Horiuchi, R., Sato, T.: Ion dynamics in steady collisionless driven reconnection. Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  16. Ishizawa, A., Horiuchi, R., Ohtani, H.: Two-scale structure of the current layer controlled by meandering motion during steady-state collisionless driven reconnection. Phys. Plasmas 11 (2004)

    Google Scholar 

  17. Horiuchi, R., Sato, T.: Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet. Phys. Plasmas 6 (1999)

    Google Scholar 

  18. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (1985)

    Google Scholar 

  19. Fox, G.C., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.: Solving Problems on Concurrent Processors. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  20. Liewer, P., Decyk, V.: A general concurrent algorithm for plasma particle-in-cell codes. J. Comput. Phys. 85 (1989)

    Google Scholar 

  21. Martinoa, B.D., Briguglio, S., Vladb, G., Sguazzeroc, P.: Parallel pic plasma simulation through particle decomposition techniques. Parallel Computing 

    Google Scholar 

  22. Anderson, D.V., Horowitz, E.J., Koniges, A.E., McCoy, M.G.: Parallel computing and multitasking. Comp. Phys. Comm. 43 (1986)

    Google Scholar 

  23. Suehiro, K., Murai, H., Seo, Y.: Integer sorting on shared-memory vector parallel computers. In: ICS 1998. Proceedings of the 12th international conference on Supercomputing (1998)

    Google Scholar 

  24. Sugiyama, T., Terada, N., Murata, T., Omura, Y., Usui, H., Matsumoto, H.: Vectorized particle simulation using listvec compile-directive on sx super-computer. IPSJ 45 (2004)

    Google Scholar 

  25. NEC Corporation: FORTRAN90/SX Programmer’s Guide. NEC Corporation (2002)

    Google Scholar 

  26. Theory and Computer Simulation Center, National Institute for Fusion Science, Japan(2005), http://www.tcsc.nifs.ac.jp/mission/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jesús Labarta Kazuki Joe Toshinori Sato

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohtani, H., Ishiguro, S., Horiuchi, R., Hayashi, Y., Horiuchi, N. (2008). Development of Electromagnetic Particle Simulation Code in an Open System. In: Labarta, J., Joe, K., Sato, T. (eds) High-Performance Computing. ISHPC ALPS 2005 2006. Lecture Notes in Computer Science, vol 4759. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77704-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77704-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77703-8

  • Online ISBN: 978-3-540-77704-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics