Skip to main content

Role of Bacteria and Bacteria-Soil Composites in Metal Biosorption and Remediating Toxic Metal-Contaminated Soil Systems

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amoroso MJ, Castro GR, Durán A, Peraud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Ind Microbiol Biotechnol 26:210–215

    Article  Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclides bioremediation: issues, considerations and potentials. Curr Opinion Microbiol 4:318–323

    Article  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Ann Rev Microbiol 43:147–171

    Article  Google Scholar 

  • Borrok D, Fein JB (2004) Distribution of protons and Cd between bacterial surfaces and dissolved humic substances determined through chemical equilibrium modeling. Geochim Cosmochim Acta 68:3043–3052

    Article  Google Scholar 

  • Borrok D, Fein JB, Kulpa CF (2004a) Proton and Cd adsorption onto natural bacterial consortia: testing universal adsorption behavior. Geochim Cosmochim Acta 68:3231–3238

    Article  Google Scholar 

  • Borrok D, Fein JB, Tischler M, O’Loughlin E, Meyer H, Liss M, Kemner KM (2004b) The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chem Geol 209:107–119

    Article  Google Scholar 

  • Borrok D, Aumend K, Fein JB (2007) Significance of ternary bacteria–metal–natural organic matter complexes determined through experimentation and chemical equilibrium modeling. Chem. Geol. 238:44–62

    Article  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67: 3299–3311

    Article  Google Scholar 

  • Burnett PGG, Daughney CJ, Peak D (2006) Cd adsorption onto Anoxybacillus flavithermus: Surface complexation modeling and spectroscopic investigations. Geochim Cosmochim Acta 70:5253–5269

    Article  Google Scholar 

  • Chenu C, Stotzky G (2002) Interactions between microorganisms∈dex microorganisms and soil particles: an overview. In Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms. Impact on the terrestrial ecosystems. Wiley, New York, pp 3–40

    Google Scholar 

  • Daughney CJ, Fein JB (1998) The effect of ionic strength on the adsorption of H+, Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis:a surface complexation model. J Colloid Interface Sci 198: 53–77

    Article  Google Scholar 

  • Daughney CJ, Fein JB, Yee N (1998) A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chem Geol 144:161–176

    Article  Google Scholar 

  • Daughney CJ, Fowle DA, Fortin D (2001) The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Acta 65:1025–1035

    Article  Google Scholar 

  • Deng X., Li QB, Lu YH, Sun DH, Huang YL, Chen XR (2003) Bioaccumulation of nickel from aqueous solutions by genetically engineered Escherichia coli. Water Res 37: 2505–2511

    Article  Google Scholar 

  • Diels L, Spaans PH, Van Roy S, Hooyberghs L, Ryngaert A, Wouters H, Walter E, Winters J, Macaskie L, Finlay J, Pernfusse B, Woebking H, Woebking H,Pümpel T, Tsezos M (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241

    Article  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61: 3319–3328

    Article  Google Scholar 

  • Fein JB, Delea D (1999) Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis: a test of the chemical equilibrium approach. Chem Geol 161:375–383

    Article  Google Scholar 

  • Fein JB, Martin AM, Wightman PG (2001) Metal adsorption onto bacterial surfaces: development of a predictive approach. Geochim Cosmochim Acta 65:4267–4273

    Article  Google Scholar 

  • Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Environ Microbiol 56:3191–3203

    Google Scholar 

  • Fowle DA, Fein JB (2000) Experimental measurements of the reversibility of metal–bacteria adsorption reactions. Chem Geol 168:27–36

    Article  Google Scholar 

  • Fowle DA, Fein JB (1999) Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model. Geochim Cosmochim Acta 63:3059–3067

    Article  Google Scholar 

  • Fowle DA, Fein JB, Martin DM (2000) Experimental study of uranyl adsorption onto Bacillus subtilis. Environ Sci Technol 34:3737–3741.

    Article  Google Scholar 

  • Gadd GM (2000) Bioremediation potential of microbial mechanisms of metal mobilization and immobilization. Curr Opinion Biotechnol 11:271–279

    Article  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption . Eng Life Sci 4: 219–232

    Article  Google Scholar 

  • Gorman-Lewis D, Elias PE, Fein JB (2005) Uranium adsorption onto Bacillus subtilis bacterial cells. Environ. Sci. Technol. 39:4906–4912

    Article  Google Scholar 

  • Gorman-Lewis D, Fein JB, Jensen MP (2006) Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim Cosmochim Acta 70:4862-4873

    Article  Google Scholar 

  • Groudev SN, Georgiev PS Spasova II, Komnitsas K (2001) Bioremediation of a soil contaminated with radioactive elements. Hydrometallurgy 59:311–318

    Article  Google Scholar 

  • Gourdon R, Bhende S, Rus E, Sofers S (1990) Comparison of cadmium biosorption by gram-positive and gram-negative bacteria from activated sludge. Biotechnol Lett 12:839–842

    Article  Google Scholar 

  • Hall C, Wales DS, Keane MA (2001) Copper removal from aqueous systems: biosorption by Pseudomonas syringae. Separ Sci Technol 36(2):223–240

    Article  Google Scholar 

  • Haas JR, Dichristina TJ, Wade R Jr (2001) Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chem Geol 180:33–54

    Article  Google Scholar 

  • He LM, Tebo BM (1998) Surface charge properties of and Cu(II) adsorption by spores of the marine Bacillus sp. strain SG-1. Appl Environ Microbiol 64:1123–1129

    Google Scholar 

  • Huang QY, Chen WL, Guo XJ (2004) Chemical fractionation of Cu, Zn and Cd in two Chinese soils as influenced by Rhizobia. Commun Soil Sci Plant Anal 35(7-8): 947–960

    Article  Google Scholar 

  • Huang QY, Wu JM, Chen WL, Li XY (2000) Adsorption of cadmium on soil colloids and minerals in presence of rhizobia. Pedosphere 10:299–307

    Google Scholar 

  • Huang QY, Chen WL, Xu LH (2005) Adsorption of copper and cadmium by Cu- and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J 22:227–236

    Article  Google Scholar 

  • Johnson KJ, Cygan RT, Fein JB (2006) Molecular simulations of metal adsorption to bacterial surfaces Geochim Cosmochim Acta 70:5075–5088

    Google Scholar 

  • Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) X-ray absorption fine structure determination of pH-dependent U{\-}bacterial cell wall interactions. Geochim Cosmochim Acta 66:3855–3871

    Article  Google Scholar 

  • Krumholz LR, Elias DA, Suflita JM (2003) Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments. Geomicrobiol J 20:61–72

    Article  Google Scholar 

  • Kulczycki E, Ferris FG, Fortin D (2002) Impact of cell wall structure on the behavior of bacterial cells as sorbents of cadmium and lead. Geomicrobiol J 19:553–565

    Article  Google Scholar 

  • Kulczycki E, Fowle DA, Fortin D, Ferris FG (2005) Sorption of cadmium and lead by bacteria-ferrihydrite composites. Geomicrobiol J 22:299–310

    Article  Google Scholar 

  • Kurek E, Czaban J, Bollag J-M (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol 43:1011–1015

    Google Scholar 

  • Langley S, Beveridge TJ (1999) Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol 65:489–498

    Google Scholar 

  • Lebeau T, Bagot D, Jezequel K, Fabre B (2002) Cadmium biosorption by free and immobilized microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Sci Total Environ 291:73–83

    Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—-processes and importance for soil systems. Earth-Sci Rev 51:1–31

    Article  Google Scholar 

  • Ledin M, Krantz-Rulcker C, Allard B (1996) Zn, Cd and Hg accumulation by microorganasims, organic and inorganic soil components in multi-compartment systems. Soil Biol Biochem 28:791–799

    Article  Google Scholar 

  • Lopez A, Lazaro N, Priego JM Marques AM (2000) Effect of pH on the adsorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24:146–151

    Article  Google Scholar 

  • Loukidou MX., Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloid Surface A 242:93–104

    Google Scholar 

  • Loukidou MX., Karapantsios TD, Zouboulis AI, Matis KA (2005) Cadmium(II) biosorption by Aeromonas caviae: kinetic modeling. Separ Sci Technol 40:1293–1311

    Article  Google Scholar 

  • Mayers IT, Beveridge TJ (1989) The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated Hamilton harbour (Lake Ontario) water. Can J Microbiol 35:764–770

    Article  Google Scholar 

  • McEldowney S (2000) The impact of surface attachment on cadmium accumulation by Pseudomonas fluorescens H2. FEMS Microbiol Ecol 33:121–128

    Article  Google Scholar 

  • Mclean JS., Lee J-U, Beveridge TJ (2002) Interactions of bacteria and environmental metals, fine-grained mineral development, and bioremediation strategies. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley, Chichester, pp 227–261

    Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989). Bacterial sorption of heavy metals. Appl Environ Microbiol 55: 3143–3149

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Ngwenya BT, Sutherland IW, Kennedy L (2003) Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Appl Geochem 18:527–538

    Article  Google Scholar 

  • Nikovskaya G, Ul’berg ZR, Strizhak NP (2002) Colloidal regularities of the interaction between uranium(VI) and the cells of metal-resistant Bacillus cereus AUMC 4368 bacterial culture. Colloid J 64:172–177

    Article  Google Scholar 

  • Ruiz-Manríquez A, Magaň PI, López V, Guzmάn R (1997) Biosorption of Cu by Thiobacillus ferrooxidans}. Bioprocess Eng 18:113–118.

    Google Scholar 

  • Savvaidis I, Hughes M, Poole R (1992) Differential pulse polarography: a method of directly measuring uptake of metal ions by live bacteria without separation of biomass and medium. FEMS Microbiol Lett 92: 181–186

    Article  Google Scholar 

  • Savvaidis I, Hughes MN, Poole RK (2003) Copper biosorption by Pseudomonas cepacia and other strains. World J Microbiol Biotechnol 19: 117–121

    Article  Google Scholar 

  • Scott JA, Palmer SJ (1988) Cadmium biosorption by bacterial exopolysaccharide. Biotechnol Lett 10:21–24

    Article  Google Scholar 

  • Simine DD, Finoli1C, Vecchio A, Andreoni V (1998) Metal ion accumulation by immobilised cells of Brevibacterium sp. J Ind Microbiol Biotechnol 20: 116–120.

    Google Scholar 

  • Small TD, Warren LA, Roden EE, Ferris FG (1999) Sorption of strontium by bacteria, Fe(III) oxide, and bacteria-Fe(III) oxide composites. Environ Sci Technol 33:4465–4470

    Google Scholar 

  • Small TD, Warren LA, Ferris FG (2001) Influence of ionic strength on strontium sorption to bacteria, Fe(III) oxide and composite bacteria-Fe(III) oxide surfaces. Appl Geochem 16:939–946

    Article  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  Google Scholar 

  • Stephen JR, Macnaughton SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opinion Biotechnol 10:230–233

    Article  Google Scholar 

  • Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides 1.Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Bio/Technol. 4:115–156

    Article  Google Scholar 

  • Templeton AS, Spormann AM, Brown GE Jr (2003a) Speciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites. Environ Sci Technol 37:2166–2172

    Article  Google Scholar 

  • Templeton AS, Trainor TP, Spormann AM, Brown GE Jr (2003b) Selenium speciation and partitioning within Burkholderia cepaciabiofilms formed on α-Al2O3 surfaces. Geochim Cosmochim Acta 67:3547–3557

    Article  Google Scholar 

  • Templeton AS, Trainor TP, Traina SJ, Spormann AM, Brown GE Jr (2001) Pb(II) distributions at biofilm-metal oxide interfaces. Proc Natl Acad Sci USA 98: 11897–11902

    Article  Google Scholar 

  • Theng BKG, Orchard VA (1995) Interactions of clays with microorganisms and bacterial survival in soil: a physicochemical perspective. In: Huang PM, Berthelin J, Bollag J-M, McGill WB, Page AL (eds) Environmental Impact of Soil Component Interactions. Lewis Publishers, Boca Raton, FL, pp 123–143

    Google Scholar 

  • Toner B, Manceau A, Marcus MA, Millet DB and Sposito G (2005) Zinc sorption by a bacterial biofilm. Environ Sci Technol 39:8288–8294

    Article  Google Scholar 

  • Tsuruta T (2004) Cell-associated adsorption of thorium or uranium from aqueous system using various microorganisms. Water Air Soil Poll 159(1):35–47

    Article  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernández LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutrophaCH34 for immobilization of heavy metals in soil. Nature Biotechnol 18:661–665

    Article  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Google Scholar 

  • Vecchio A, Finoli C, Simine DD, Andreoni V (1998) Heavy metal biosorption by bacterial cells. Fresenius J Anal Chem 361:338–342

    Article  Google Scholar 

  • Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobililze heavy metals from solution. Appl Environ Microbiol 55:2976–2984

    Google Scholar 

  • Wightman PG, Fein JB (2001) Ternary interactions in a humic acid–Cd–bacteria system. Chem Geol 180:55–65

    Article  Google Scholar 

  • Yee N, Fein JB (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65:2037–2042

    Article  Google Scholar 

  • Yee N, Fein JB (2002) Does metal adsorption onto bacterial surfaces inhibit or enhance aqueous metal transport? Column and batch reactor experiments on Cd–Bacillus subtilis∈dex{Bacillus subtilis}–quartz∈dex{quartz} systems. Chem Geol 185: 303–319

    Article  Google Scholar 

  • Yee N, Benning LG, Phoenix VR and Ferris FG (2004a) Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38: 775–782

    Article  Google Scholar 

  • Yee N, Fowle DA, Ferris FG (2004b) A Donnan potential model for metal sorption onto Bacillus subtilis. Geochim Cosmochim Acta 68: 3657–3664

    Article  Google Scholar 

  • Yilmaz EI (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–415

    Article  Google Scholar 

  • Yilmaz EI, Ensari NY (2005) Cadmium biosorption by Bacillus circulans strain EB1. World J Microbiol Biotechnol 21:777–779

    Article  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, Q., Chen, W., Theng, B.K.G. (2008). Role of Bacteria and Bacteria-Soil Composites in Metal Biosorption and Remediating Toxic Metal-Contaminated Soil Systems. In: Huang, Q., Huang, P.M., Violante, A. (eds) Soil Mineral Microbe-Organic Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77686-4_3

Download citation

Publish with us

Policies and ethics