Skip to main content

Algorithms for Effective Argumentation in Classical Propositional Logic: A Connection Graph Approach

  • Conference paper
Foundations of Information and Knowledge Systems (FoIKS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4932))

Abstract

There are a number of frameworks for modelling argumentation in logic. They incorporate a formal representation of individual arguments and techniques for comparing conflicting arguments. A common assumption for logic-based argumentation is that an argument is a pair \(\langle\Phi,\alpha\rangle\) where Φ is minimal subset of the knowledgebase such that Φ is consistent and Φ entails the claim α. Different logics provide different definitions for consistency and entailment and hence give us different options for argumentation. Classical propositional logic is an appealing option for argumentation but the computational viability of generating an argument is an issue. Here we propose ameliorating this problem by using connection graphs to give information on the ways that formulae of the knowledgebase can be used to minimally and consistently entail a claim. Using a connection graph allows for a substantially reduced search space to be used when seeking all the arguments for a claim from a knowledgebase. We provide a theoretical framework and algorithms for this proposal, together with some theoretical results and some preliminary experimental results to indicate the potential of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amgoud, L., Cayrol, C.: A model of reasoning based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34, 197–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: UAI 1993. Proceedings of the 9th Annual Conference on Uncertainty in Artificial Intelligence, pp. 1445–1449. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  3. Besnard, Ph., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128, 203–235 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Besnard, Ph., Hunter, A.: Practical first-order argumentation. In: AAAI 2005. Proc. of the 20th National Conference on Artificial Intelligence, pp. 590–595. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Besnard, Ph., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Google Scholar 

  6. Bibel, W.: Deduction: Automated Logic. Academic Press, London (1993)

    Google Scholar 

  7. Bryant, D., Krause, P., Vreeswijk, G.: Argue tuProlog: A lightweight argumentation engine for agent applications. In: Comma 2006. Computational Models of Argument, pp. 27–32. IOS Press, Amsterdam (2006)

    Google Scholar 

  8. Cayrol, C., Doutre, S., Mengin, J.: Dialectical proof theories for the credulous preferred semantics of argumentation frameworks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 668–679. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Chesñevar, C., Maguitman, A., Loui, R.: Logical models of argument. ACM Computing Surveys 32, 337–383 (2000)

    Article  Google Scholar 

  10. Chesñevar, C., Simari, G., Godo, L.: Computing dialectical trees efficiently in possibilistic defeasible logic programming. In: Baral, C., et al. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of assumption-based argumentation for default reasoning. Artificial Intelligence 141, 57–78 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dung, P., Kowalski, R., Toni, F.: Dialectical proof procedures for assumption-based admissible argumentation. Artificial Intelligence 170, 114–159 (2006)

    Article  MathSciNet  Google Scholar 

  13. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the ACM 42, 3–42 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elvang-Gøransson, M., Krause, P., Fox, J.: Dialectic reasoning with classically inconsistent information. In: UAI 1993. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pp. 114–121. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  15. García, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gent, I.P., Walsh, T.: Easy problems are sometimes hard. Artificial Intelligence 70(1–2), 335–345 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kakas, A., Toni, F.: Computing argumentation in logic programming. Journal of Logic and Computation 9, 515–562 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kowalski, R.: A proof procedure using connection graphs. Journal of the ACM 22, 572–595 (1975)

    Article  MATH  Google Scholar 

  19. Kowalski, R.: Logic for problem solving. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  20. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

    MATH  MathSciNet  Google Scholar 

  21. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gabbay, D. (ed.) Handbook of Philosophical Logic. Kluwer, Dordrecht (2000)

    Google Scholar 

  22. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Artificial Intelligence 81(1–2), 17–29 (1996)

    Article  MathSciNet  Google Scholar 

  23. Vreeswijk, G.: An algorithm to compute minimally grounded and admissible defence sets in argument systems. In: Comma 2006. Computational Models of Argument, pp. 109–120. IOS Press, Amsterdam (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sven Hartmann Gabriele Kern-Isberner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efstathiou, V., Hunter, A. (2008). Algorithms for Effective Argumentation in Classical Propositional Logic: A Connection Graph Approach. In: Hartmann, S., Kern-Isberner, G. (eds) Foundations of Information and Knowledge Systems. FoIKS 2008. Lecture Notes in Computer Science, vol 4932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77684-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77684-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77683-3

  • Online ISBN: 978-3-540-77684-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics