Skip to main content

Nanotribology and Materials Characterization of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices

  • Chapter
Nanotribology and Nanomechanics

Abstract

Micro/nanoelectromechanical systems (MEMS/NEMS) need to be designed to perform their expected functions with short duration, typically in millisecond to picosecond timescales. Expected life of the devices for high-speed contacts can vary from a few hundred thousand to many billions of cycles, e.g., over a hundred billion cycles for digital micromirror devices (DMDs), which puts serious requirements on materials. For BioMEMS/BioNEMS, adhesion between biological molecular layers and the substrate, and friction and wear of biological layers may be important. There is a need for the development of a fundamental understanding of adhesion, friction/stiction, wear, and the role of surface contamination, and environment. Most mechanical properties are known to be scale-dependent. Therefore, the properties of nanoscale structures need to be measured. MEMS/NEMS materials need to exhibit good mechanical and tribological properties on the micro/nanoscale. There is a need to develop lubricants and identify lubrication methods that are suitable for MEMS/NEMS. Methods need to be developed to enhance adhesion between biomolecules and the device substrate. Component-level studies are required to provide a better understanding of tribological phenomena occurring in MEMS/NEMS. The emergence of micro/nanotribology and techniques based on atomic force microscopy has provided researchers with a viable approach to address these problems. This chapter presents a review of micro/nanoscale adhesion, friction, and wear studies of materials and lubrication studies for MEMS/NEMS and BioMEMS/BioNEMS, and component-level studies of stiction phenomena in MEMS/NEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous: Microelectromechanical Systems: Advanced Materials and Fabrication Methods, NMAB-483 (National Academy, Washington, D.C. 1997)

    Google Scholar 

  2. M. Roukes: Nanoelectromechanical systems face the future, Physics World, 25–31 (Feb 2001)

    Google Scholar 

  3. Anonymous: Small Tech 101 – An Introduction to Micro and Nanotechnology (Small Times, 2003)

    Google Scholar 

  4. M. Schulenburg: Nanotechnology – Innovation for Tomorrow’s World (European Commission, Research DG, Brussels 2004)

    Google Scholar 

  5. J.C. Eloy: Status of the MEMS Industry 2005, Report of Yole Developpement, France (SPIE Photonic West, San Jose 2005) presented at

    Google Scholar 

  6. S. Lawrence: Nanotech grows up, Technol. Rev. 108(6), 31 (2005)

    Google Scholar 

  7. A.P. Graham, G.S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, W. Hoenlein: Towards the integration of carbon nanotubes in microelectronics, Diam. Relat. Mater. 13, 1296–1300 (2004)

    Article  CAS  Google Scholar 

  8. D. Srivastava: Computational Nanotechnology of Carbon Nanotubes. In: Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC, Boca Raton 2004) pp.25–63

    Google Scholar 

  9. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven: Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1–22 (2003)

    Article  CAS  Google Scholar 

  10. R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, R.M. White: Microsensors (IEEE, New York 1990)

    Google Scholar 

  11. I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford 1996)

    Google Scholar 

  12. W.S. Trimmer (ed.): Micromachines and MEMS, Classic and Seminal Papers to 1990 (IEEE, New York 1997)

    Google Scholar 

  13. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer Academic, Dordrecht 1998) Netherlands

    Google Scholar 

  14. G.T.A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw–Hill, Boston 1998)

    Google Scholar 

  15. S.D. Senturia: Microsystem Design (Kluwer Academic, Boston 2000)

    Google Scholar 

  16. M. Elwenspoek, R. Wiegerink: Mechanical Microsensors (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  17. M. Gad-el-Hak: The MEMS Handbook (CRC, Boca Raton 2002)

    Google Scholar 

  18. T.R. Hsu: MEMS and Microsystems: Design and Manufacture (McGraw–Hill, Boston 2002)

    Google Scholar 

  19. M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002)

    Google Scholar 

  20. A. Hierlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  21. T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36, 39–47 (Oct 1993)

    CAS  Google Scholar 

  22. J. Bryzek, K. Peterson, W. McCulley: Micromachines on the march, IEEE Spectrum, 20–31 (May 1994)

    Google Scholar 

  23. J.S. Aden: The third-generation HP thermal inkjet printhead, HP J., 4–45 (Feb. 1994)

    Google Scholar 

  24. H. Le: Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49–62 (1998)

    CAS  Google Scholar 

  25. R. Baydo, A. Groscup: Getting to the heart of ink jet: Printheads, Beyond Recharger, 10–12 (2001)May 10, also visit

    Google Scholar 

  26. E.R. Lee: Microdrop Generation (CRC, Boca Raton 2003)

    Google Scholar 

  27. L.J. Hornbeck, W.E. Nelson: Bistable Deformable Mirror Device, Technical Digest Series: Spatial Light Modulators and Applications, Vol.8 (OSA, Washington 1988) pp.107–110

    Google Scholar 

  28. L.J. Hornbeck: A digital light processing™ update – Status and future applications, Proc. Soc. Photo-Opt. Eng. 3634 (Projection Displays V), 158–170 (1999)

    Google Scholar 

  29. L.J. Hornbeck: The DMD™ projection display chip: A MEMS-based technology, MRS Bull. 26, 325–328 (2001)

    Google Scholar 

  30. K. Suzuki: Micro electro mechanical systems (MEMS) micro-switches for use in DC, RF, and optical applications, Jpn. J. Appl. Phys. 41, 4335–4339 (2002)

    Article  CAS  Google Scholar 

  31. V.M. Lubecke, J.C. Chiao: MEMS Technologies for Enabling High Frequency Communication Cicuits, Proc. IEEE 4th Int. Conf. on Telecom. In Modern Satellite, Cable and Broadcasting Services, Nis, Yugoslavia (IEEE, New York 1999) pp.1–8

    Google Scholar 

  32. C.R. Giles, D. Bishop, V. Aksyuk: MEMS for light-wave networks, MRS Bull., 328–329 (April 2001)

    Google Scholar 

  33. A. Hierlemann, O. Brand, C. Hagleitner, H. Baltes: Microfabrication Techniques for Chemical/Biosensors. In: Proc. of the IEEE, Chemical and Biological Microsensors, Vol.Vol. 91, ed. by S. Casalnuovo, R.B. Brown (IEEE, New York 2003) pp.839–863

    Google Scholar 

  34. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)

    Google Scholar 

  35. H. Hamilton: Contact recording on perpendicular rigid media, J. Mag. Soc. Jpn. 15((Suppl. S2)), 483–481 (1991)

    Google Scholar 

  36. D.A. Horsley, M.B. Cohn, A. Singh, R. Horowitz, A.P. Pisano: Design and fabrication of an angular microactuator for magnetic disk drives, J. Microelectromech. Syst. 7, 141–148 (1998)

    Article  Google Scholar 

  37. T. Hirano, L.S. Fan, D. Kercher, S. Pattanaik, T.S. Pan: HDD Tracking Microactuator and its Integration Issues. In: Proc. ASME Int. Mech. Eng. Congress and Exp., Vol.MEMS- Vol. 2, ed. by A.P. Lee, J. Simon, F.K. Foster, R.S. Keynton (ASME, New York 2000) pp.449–452

    Google Scholar 

  38. T. Fukuda, F. Arai, L. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proc. IEEE 91, 1803–1818 (2003)

    Article  CAS  Google Scholar 

  39. K.E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)

    Google Scholar 

  40. G. Timp (ed.): Nanotechnology (Springer, New York 1999)

    Google Scholar 

  41. M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris: Carbon Nanotubes – Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  42. E.A. Rietman: Molecular Engineering of Nanosystems (Springer, New York 2001)

    Google Scholar 

  43. W.A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (eds): Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton 2002)

    Google Scholar 

  44. H.S. Nalwa (ed.): Nanostructured Materials and Nanotechnology (Academic, San Diego 2002)

    Google Scholar 

  45. C.P. Poole, F.J. Owens: Introduction to Nanotechnology (Wiley, Hoboken 2003)

    Google Scholar 

  46. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  47. B. Bhushan: Nanotribology and Nanomechanics – An Introduction (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  48. J.A. Stroscio, D.M. Eigler: Atomic and molecular manipulation with a scanning tunneling microscope, Science 254, 1319 (1991)

    Article  CAS  Google Scholar 

  49. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Duerig, W. Haeberle: Ultrahigh density, high data-rate NEMS based AFM data storage system, Microelec. Eng. 46, 11–27 (1999)

    Article  CAS  Google Scholar 

  50. C. Stampfer, A. Jungen, C. Hierold: Fabrication of Discrete Carbon Nanotube Based Nanoscaled Force Sensor, Proc. IEEE Sensors 2004, Vienna (IEEE, New York 2004) pp.1056–1059

    Google Scholar 

  51. B. Bhushan: Mechanics and Reliability of Flexible Magnetic Media, 2nd edn. (Springer, New York 2000)

    Google Scholar 

  52. Anonymous: International Technology Roadmap for Semiconductors (2004), http://public.itrs.net/

    Google Scholar 

  53. A. Manz, H. Becker (eds): Microsystem Technology in Chemistry and Life Sciences, Topics in Current Chemistry 194 (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  54. J. Cheng, L.J. Kricka (eds): Biochip Technology (Harwood Academic, Philadelphia 2001)

    Google Scholar 

  55. M.J. Heller, A. Guttman (eds): Integrated Microfabricated Biodevices (Marcel Dekker, New York 2001)

    Google Scholar 

  56. C. Lai Poh San, E.P.H. Yap (eds.): Frontiers in Human Genetics (World Scientific, Singapore 2001)

    Google Scholar 

  57. C.H. Mastrangelo, H. Becker (eds): Microfluidics and BioMEMS, Proc. of SPIE Vol (SPIE, Bellingham 2001) p.4560

    Google Scholar 

  58. H. Becker, L.E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)

    Article  CAS  Google Scholar 

  59. D.J. Beebe, G.A. Mensing, G.M. Walker: Physcis and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  CAS  Google Scholar 

  60. A. van der Berg (ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam 2003)

    Google Scholar 

  61. P. Gravesen, J. Branebjerg, O. Jensen: Microfluidics – A Review, J. Micromech. Microeng. 3, 168–182 (1993)

    Article  CAS  Google Scholar 

  62. S.N. Bhatia, C.S. Chen: Tissue engineering at the micro-scale, Biomed. Microdevices 2, 131–144 (1999)

    Article  Google Scholar 

  63. R.P. Lanza, R. Langer, J. Vacanti (eds): Principles of Tissue Engineering, 2nd edn. (Academic, San Diego 2000)

    Google Scholar 

  64. E. Leclerc, K.S. Furukawa, F. Miyata, T. Sakai, T. Ushida, T. Fujii: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials 25, 4683–4690 (2004)

    Article  CAS  Google Scholar 

  65. K. Park (ed): Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington, D. C. 1997)

    Google Scholar 

  66. R.S. Shawgo, A.C.R. Grayson, Y. Li, M.J. Cima: BioMEMS for drug delivery, Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002)

    Article  CAS  Google Scholar 

  67. P.A. Oeberg, T. Togawa, F.A. Spelman: Sensors in Medicine and Health Care (Wiley, New York 2004)

    Google Scholar 

  68. J.V. Zoval, M.J. Madou: Centrifuge-based fluidic platforms, Proc. IEEE 92, 140–153 (2000)

    Article  CAS  Google Scholar 

  69. W.C. Tang, A.P. Lee: Defense applications of MEMS, MRS Bull. 26, 318–319 (2001)Also see www.darpa.mil/mto/mems

    Google Scholar 

  70. M.R. Taylor, P. Nguyen, J. Ching, K.E. Peterson: Simulation of microfluidic pumping in a genomic DNA blood-processing cassette, J. Micromech. Microeng. 13, 201–208 (2003)

    Article  CAS  Google Scholar 

  71. R. Raiteri, M. Grattarola, M. Butt, P. Skladal: Micromechanical cantilever-based biosensor, Sens. Actuators B: Chem. 79, 115–126 (2001)

    Article  Google Scholar 

  72. B. Bhushan, D.R. Tokachichu, M.T. Keener, S.C. Lee: Morphology and adhesion of biomolecules on silicon based surfaces, Acta Biomateriala 1, 327–341 (2005)

    Article  Google Scholar 

  73. H.P. Lang, M. Hegner, C. Gerber: Cantilever array sensors, Mater. Today, 30–36 (April 2005)

    Google Scholar 

  74. F. Patolsky, C. Lieber: Nanowire nanosensors, Mater. Today, 20–28 (April 2005)

    Google Scholar 

  75. M. Scott: MEMS and MOEMS for National Security ApplicationsReliability, Testing, and Characterization of MEMS/MOEMS II, Proc. of SPIE, Vol.Vol. 4980 (SPIE, Bellingham 2003) pp.xxxvii–xliv

    Google Scholar 

  76. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari: Nanopore technology for biomedical applications, Biomed. Devices 2, 11–40 (1999)

    CAS  Google Scholar 

  77. D. Hansford, T. Desai, M. Ferrari: Nano-Scale Size-Based Biomolecular Separation Technology. In: Biochip Technology, ed. by J. Cheng, L.J. Kricka (Harwood Academic, New York 2001) pp.341–361

    Google Scholar 

  78. F.J. Martin, C. Grove: Microfabricated drug delivery systems: concepts to improve clinical benefits, Biomed. Microdev. 3, 97–108 (2001)

    Article  CAS  Google Scholar 

  79. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  80. B. Bhushan (ed.): Modern Tribology Handbook (CRC, Boca Raton 2001)

    Google Scholar 

  81. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  82. B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction, J. Vac. Sci. Technol. B 21, 2262–2296 (2003)

    Article  CAS  Google Scholar 

  83. Y.C. Tai, L.S. Fan, R.S. Muller: IC-Processed Micro-Motors: Design, Technology and Testing, Proc. IEEE Micro Electro Mechanical Systems, 1–6 (1989)

    Google Scholar 

  84. S.M. Spearing, K.S. Chen: Micro-gas turbine engine materials and structures, Ceramic Eng. Sci. Proc. 18, 11–18 (2001)

    Google Scholar 

  85. L.G. Frechette, S.A. Jacobson, K.S. Breuer: High-speed microfabricated silicon turbomachinery and fluid film bearings, J. MEMS 14, 141–152 (2005)

    Google Scholar 

  86. L.X. Liu, Z.S. Spakovszky: Effect of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior, Proc. ASME Turbo Expo 2005, Paper No. GT-2005–68199 (Reno, Nevada 2005)

    Google Scholar 

  87. M. Mehregany, K.J. Gabriel, W.S.N. Trimmer: Integrated fabrication of polysilicon mechanisms, IEEE Trans. Electron. Dev. 35, 719–723 (1988)

    Article  Google Scholar 

  88. H. Lehr, S. Abel, J. Doppler, W. Ehrfeld, B. Hagemann, K.P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Microactuators as Driving Units for Microrobotic Systems. In: Proc. Microrobotics: Components and Applications, Vol.Vol. 2906, ed. by A. Sulzmann (SPIE, Bellingham 1996) pp.202–210

    Google Scholar 

  89. H. Lehr, W. Ehrfeld, B. Hagemann, K.P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Development of micro-millimotors, Min. Invas. Ther. Allied Technol. 6, 191–194 (1997)

    Article  Google Scholar 

  90. F. Michel, W. Ehrfeld: Microfabrication Technologies for High Performance Microactuators. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp.53–72

    Google Scholar 

  91. D.M. Tanner, N.F. Smith: MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes, SAND2000-0091 (Sandia National Laboratories, Albuquerque 2000) Download from www.prod.sandia.gov

    Google Scholar 

  92. E.J. Garcia, J.J. Sniegowski: Surface micromachined microengine, Sens. Actuators A 48, 203–214 (1995)

    Article  Google Scholar 

  93. S.S. Mani, J.G. Fleming, J.A. Walraven, J.J. Sniegowski: Effect of W Coating on Microengine Performance, Proc. 38th Annual Inter. Reliability Phys. Symp. (IEEE, New York 2000) pp.146–151

    Google Scholar 

  94. M.G. Hankins, P.J. Resnick, P.J. Clews, T.M. Mayer, D.R. Wheeler, D.M. Tanner, R.A. Plass: Vapor Deposition of Amino-Functionalized Self-Assembled Monolayers on MEMS, Proc. SPIE, Vol.4980 (SPIE, Bellingham 2003) pp.238–247

    Google Scholar 

  95. J.K. Robertson, K.D. Wise: An electrostatically actuated integrated microflow controller, Sens. Actuators A 71, 98–106 (1998)

    Article  Google Scholar 

  96. B. Bhushan: Nanotribology and Nanomechanics of MEMS Devices, Proc. Ninth Annual Workshop on Micro Electro Mechanical Systems (IEEE, New York 1996) pp.91–98

    Google Scholar 

  97. R.E. Sulouff: MEMS Opportunities in Accelerometers and Gyros and the Microtribology Problems Limiting Commercialization. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp.109–120

    Google Scholar 

  98. J.R. Martin, Y. Zhao: Micromachined Device Packaged to Reduce Stiction, US Patent 5,694,740 (1997) Dec. 9

    Google Scholar 

  99. G. Smith: The application of microtechnology to sensors for the automotive industry, Microelectron. J. 28, 371–379 (1997)

    Article  CAS  Google Scholar 

  100. L.S. Chang, P.L. Gendler, J.H. Jou: Thermal mechanical and chemical effects in the degradation of the plasma-deposited α-SC:H passivation layer in a multlayer thin-film device, J. Mater. Sci. 26, 1882–1290 (1991)

    Article  CAS  Google Scholar 

  101. M. Parsons: Design and manufacture of automotive pressure sensors, Sensors 18(4), 32–46 (2001)

    Google Scholar 

  102. S.A. Henck: Lubrication of digital micromirror devices, Tribol. Lett. 3, 239–247 (1997)

    Article  CAS  Google Scholar 

  103. M.R. Douglass: Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Devices (DMD), Proc. 36th Annual Inter. Reliability Phys. Symp. (IEEE, New York 1998) pp.9–16

    Google Scholar 

  104. M.R. Douglass: DMD Reliability: A MEMS Success Story, Reliability, Testing, and Characterization of MEMS/MOEMS II, Proc. of SPIE Vol. 4980 (SPIE, Bellingham 2003) pp.1–11

    Google Scholar 

  105. L.J. Hornbeck: Low Surface Energy Passivation Layer for Micromechanical Devices, US Patent 5,602,671 (1997) Feb. 11

    Google Scholar 

  106. R.A. Robbins, S.J. Jacobs: Lubricant Delivery for Micromechanical Devices, US Patent 6,300,294 B1 (2001) Oct. 9

    Google Scholar 

  107. I. DeWolf, W.M. van Spengen: Techniques to study the reliability of metal RF MEMS capacitive switches, Microelectron. Reliab. 42, 1789–1794 (2002)

    Article  Google Scholar 

  108. B. McCarthy, G.G. Adams, N.E. McGruer, D. Potter: A dynamic model, including contact bounce, of an electrostatically actuated microswitch, J. MEMS 11, 276–283 (2002)

    Google Scholar 

  109. S. Shoji, M. Esashi: Microflow devices and systems, J. Micromech. Microeng. 4, 157–171 (1994)

    Article  CAS  Google Scholar 

  110. M. Stehr, S. Messner, H. Sandmaier, R. Zenergle: The VAMP – A new device for handing liquids or gases, Sens. Actuators A 57, 153–157 (1996)

    Article  Google Scholar 

  111. P. Woias: Micropumps – Summarizing the First Two Decades. In: Proc. of SPIE - Microfluidics and BioMEMS, Vol.Vol. 4560, ed. by C.H. Mastrangelo, H. Becker (SPIE, Bellingham 2001) pp.39–52

    Google Scholar 

  112. N.T. Nguyen, X. Huang, T.K. Chuan: MEMS-micropumps: A review, ASME J. Fluids Eng. 124, 384–392 (2002)

    Article  Google Scholar 

  113. J. Henniker: Triboelectricity in polymers, Nature 196, 474 (1962)

    Article  CAS  Google Scholar 

  114. M. Sakaguchi, H. Kashiwabara: A generation mechanism of triboelectricity due to the reaction of mechaniradicals with mechanoions which are produced by mechanical fracture of solid polymer, Colloid Polym. Sci. 270, 621–626 (1992)

    Article  CAS  Google Scholar 

  115. G.R. Freeman, N.H. March: Triboelectricity and some associated phenomena, Mater. Sci. Eng. 15, 1454–1458 (1999)

    CAS  Google Scholar 

  116. S.K. Cho, H. Moon, C. –J. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. MEMS 12, 70–80 (2003)

    Google Scholar 

  117. A.R. Wheeler, H. Moon, C.A. Bird, R.R.O. Loo, C. –J. Kim, J. A. Loo, R.L. Garrell: Digital microfluidics with in-line sample purification for proteomics analysis with MALDI-MS, Anal. Chem. 77, 534–540 (2005)

    Article  CAS  Google Scholar 

  118. S.C. Lee, M.T. Keener, D.R. Tokachichu, B. Bhushan, P.D. Barnes, B.R. Cipriany, M. Gao, L.J. Brillson: Preparation of a thin protein surface on thermally grown silicon dioxide, J. Vac. Sci. Technol. B 23, 1856–1865 (2005)

    Article  CAS  Google Scholar 

  119. J. Black: Biological Performance of Materials: Fundamentals of Biocompatibility (Marcel Dekker, New York 1999)

    Google Scholar 

  120. D.R. Tokachichu, B. Bhushan: Bioadhesion of Polymers for BioMEMS, IEEE Trans. Nanotech. 5, 228–231 (2006)

    Article  Google Scholar 

  121. G. Wei, B. Bhushan, N. Ferrell, D. Hansford: Microfabrication and nanomechanical characterization of polymer microelectromechanical systems for biological applications, J. Vac. Sci. Technol. A 23, 811–819 (2005)

    Article  CAS  Google Scholar 

  122. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffman: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)

    Article  CAS  Google Scholar 

  123. B. Bhushan, D. Hansford, K.K. Lee: Surface Modification of Silicon and PDMS Surfaces with Vapor Phase Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2005)

    Article  CAS  Google Scholar 

  124. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffman: Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Article  CAS  Google Scholar 

  125. K.K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of perfluoropolymer thin films for biomems applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)

    Article  CAS  Google Scholar 

  126. P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari: A theoretical model for the margination of particles with blood vessels, Annals Biomed. Eng. 33, 179–190 (2005)

    Article  CAS  Google Scholar 

  127. H. Guckel, D.W. Burns: Fabrication of micromechanical devices from polysilicon films with smooth surfaces, Sens. Actuators 20, 117–122 (1989)

    Article  CAS  Google Scholar 

  128. G.T. Mulhern, D.S. Soane, R.T. Howe: Supercritical Carbon Dioxide Drying of Microstructures, Proc. Int. Conf. on Solid-State Sensors and Actuators (IEEE, New York 1993) pp.296–299

    Google Scholar 

  129. K.F. Man, B.H. Stark, R. Ramesham: A Resource Handbook for MEMS Reliability, Rev. A. (JPL Press, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 1998)

    Google Scholar 

  130. S. Kayali, R. Lawton, B.H. Stark: MEMS reliability assurance activities at JPL, EEE Links 5, 10–13 (1999)

    Google Scholar 

  131. S. Arney: Designing for MEMS reliability, MRS Bull. 26, 296–299 (2001)

    CAS  Google Scholar 

  132. K.F. Man: MEMS Reliability for Space Applications by Elimination of Potential Failure Modes Through Testing and Analysis, http://www.rel.jpl.nasa.gov/ Org//atop/products/Prod-map.html (2001)

  133. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)

    Article  CAS  Google Scholar 

  134. S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sens. Actuators A 101, 338–351 (2002)

    Article  Google Scholar 

  135. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  136. B. Bhushan, B.K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments, Reprint edition edn. (Krieger, Malabar 1997)

    Google Scholar 

  137. J.F. Shackelford, W. Alexander, J.S. Park (eds.): CRC Material Science and Engineering Handbook, 2nd edn. (CRC, Boca Raton 1994)

    Google Scholar 

  138. J.S. Shor, D. Goldstein, A.D. Kurtz: Characterization of n-type β-SiC as a piezoresistor, IEEE Trans. Electron. Dev. 40, 1093–1099 (1993)

    Article  CAS  Google Scholar 

  139. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu: Silicon Carbide MEMS for Harsh Environments, Proc. IEEE 86, 1594–1610 (1998)

    Article  CAS  Google Scholar 

  140. C.A. Zorman, A.J. Fleischmann, A.S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz: Epitaxial growth of 3C–SiC films on 4 in. diam Si(100) silicon wafers by atmospheric pressure chemical vapor deposition, J. Appl. Phys. 78, 5136–5138 (1995)

    Article  CAS  Google Scholar 

  141. C.A. Zorman, S. Roy, C.H. Wu, A.J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1998)

    Article  CAS  Google Scholar 

  142. C.H. Wu, S. Stefanescu, H.I. Kuo, C.A. Zorman, M. Mehregany: Fabrication and Testing of Single Crystalline 3C–SiC Piezoresistive Pressure Sensors, Technical Digest – 11th Int. Conf. Solid State Sensors and Actuators – Eurosensors, Vol.XV (Munich 2001) pp.514–517

    Google Scholar 

  143. A.A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline sic micromotors, IEEE Electron. Dev. Lett. 21, 164–166 (2000)

    Article  CAS  Google Scholar 

  144. B.K. Gupta, J. Chevallier, B. Bhushan: Tribology of ion bombarded silicon for micromechanical applications, ASME J. Tribol. 115, 392–399 (1993)

    CAS  Google Scholar 

  145. B.K. Gupta, B. Bhushan: Nanoindentation studies of ion implanted silicon, Surf. Coat. Technol. 68-69, 564–570 (1994)

    Article  Google Scholar 

  146. B.K. Gupta, B. Bhushan, J. Chevallier: Modification of tribological properties of silicon by boron ion implantation, Tribol. Trans. 37, 601–607 (1994)

    Article  CAS  Google Scholar 

  147. B. Bhushan, V.N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75, 5741–5746 (1994)

    Article  CAS  Google Scholar 

  148. G.M. Pharr: The Anomalous Behavior of Silicon During Nanoindentation. In: Thin Films: Stresses and Mechanical Properties III, Vol.239, ed. by W.D. Nix, J.C. Bravman, E. Arzt, L.B. Freund (Materials Research Soc., Pittsburgh 1991) pp.301–312

    Google Scholar 

  149. D.L. Callahan, J.C. Morris: The extent of phase transformation in silicon hardness indentation, J. Mater. Res. 7, 1612–1617 (1992)

    Article  Google Scholar 

  150. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)

    Article  CAS  Google Scholar 

  151. B. Bhushan, S. Venkatesan: Friction and wear studies of silicon in sliding contact with thin-film magnetic rigid disks, J. Mater. Res. 8, 1611–1628 (1993)

    Article  CAS  Google Scholar 

  152. S. Venkatesan, B. Bhushan: The role of environment in the friction and wear of single-crystal silicon in sliding contact with thin-film magnetic rigid disks, Adv. Info Storage Syst. 5, 241–257 (1993)

    Google Scholar 

  153. S. Venkatesan, B. Bhushan: The sliding friction and wear behavior of single-crystal, polycrystalline and oxidized silicon, Wear 171, 25–32 (1994)

    Article  CAS  Google Scholar 

  154. B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8, 1985–2015 (1999)

    Article  CAS  Google Scholar 

  155. B. Bhushan, S. Sundararajan, X. Li, C.A. Zorman, M. Mehregany: Micro/Nanotribological Studies of Single-Crystal Silicon and Polysilicon and SiC Films for Use in MEMS Devices. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp.407–430

    Google Scholar 

  156. S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and sic films for mems applications, Wear 217, 251–261 (1998)

    Article  CAS  Google Scholar 

  157. X. Li, B. Bhushan: Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)

    Article  CAS  Google Scholar 

  158. H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Article  CAS  Google Scholar 

  159. B. Bhushan, A.V. Kulkarni, V.N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and langmuir–blodgett monolayers by atomic force and friction force microscopy, Langmuir 11, 3189–3198 (1995)

    Article  CAS  Google Scholar 

  160. V.N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys 79, 8071–8075 (1996)

    Article  CAS  Google Scholar 

  161. V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)

    Article  CAS  Google Scholar 

  162. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412:1–11 (2001)

    Article  CAS  Google Scholar 

  163. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)

    Article  CAS  Google Scholar 

  164. N.S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)

    Article  CAS  Google Scholar 

  165. Z. Tao, B. Bhushan: Bonding, degradation, and environmental effects on novel perfluoropolyether lubrications, Wear 259, 1352–1361 (2005)

    Article  CAS  Google Scholar 

  166. Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether, self assembled monolayers, and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)

    Article  CAS  Google Scholar 

  167. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der waals forces in scanning force microscopy, Phys. Rev. B 62, 13667–13673 (2000)

    Article  CAS  Google Scholar 

  168. H. Liu, B. Bhushan, W. Eck, V. Stadler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)

    Article  CAS  Google Scholar 

  169. N.S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett. 86, 061906–1 to –3 (2005)

    Article  CAS  Google Scholar 

  170. N.S. Tambe, B. Bhushan: Micro/nanotribological characterization of PDMS and PMMA used for bioMEMS/NEMS applications, Ultramicroscopy 105, 238–247 (2005)

    Article  CAS  Google Scholar 

  171. B. Bhushan, Z. Burton: Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16, 467–478 (2005)

    Article  CAS  Google Scholar 

  172. B. Bhushan, D. Tokachichu, M.T. Keener, S.C. Lee: Nanoscale adhesion, friction, and wear studies of biomolecules on silicon based surfaces, Acta Biomaterialia 2, 39–49 (2005)

    Article  Google Scholar 

  173. M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)

    Article  CAS  Google Scholar 

  174. R.N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988–994 (1936)

    Article  CAS  Google Scholar 

  175. A. Cassie, S. Baxter: Wetting of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  176. M. Nosonovsky, B. Bhushan: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol. 12, 231–237 (2006)

    Article  CAS  Google Scholar 

  177. Z. Burton, B. Bhushan: Hydrophobicity, adhesion and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 20, 83–90 (2005)

    Google Scholar 

  178. S. Sundararajan, B. Bhushan: Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope, J. Vac. Sci. Technol. A 19, 1777–1785 (2001)

    Article  CAS  Google Scholar 

  179. C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part II: Experiments, J. Microelectromech. Syst. 2, 44–55 (1993)

    Article  CAS  Google Scholar 

  180. R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20 (1997)

    Article  CAS  Google Scholar 

  181. C.H. Mastrangelo: Surface Force Induced Failures in Microelectromechanical Systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp.367–395

    Google Scholar 

  182. M.P. De Boer, T.A. Michalske: Accurate method for determining adhesion of cantilever beams, J. Appl. Phys. 86, 817 (1999)

    Article  Google Scholar 

  183. R.L. Alley, G.J. Cuan, R.T. Howe, K. Komvopoulos: In: Proc. Solid State Sensor and Actuator Workshop, ed. by C.H. Mastrangelo, C.H. Hsu (IEEE, New York 1992) pp.202–207

    Chapter  Google Scholar 

  184. H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Article  CAS  Google Scholar 

  185. B. Bhushan, H. Liu, S.M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)

    Article  CAS  Google Scholar 

  186. S.K. Chilamakuri, B. Bhushan: A comprehensive kinetic meniscus model for prediction of long-term static friction, J. Appl. Phys. 15, 4649–4656 (1999)

    Article  Google Scholar 

  187. Y.C. Tai, R.S. Muller: Frictional study of IC processed micromotors, Sens. Actuators A 21-23, 180–183 (1990)

    Google Scholar 

  188. K.J. Gabriel, F. Behi, R. Mahadevan, M. Mehregany: In situ friction and wear measurement in integrated polysilicon mechanisms, Sens. Actuators A. 21-23, 184–188 (1990)

    Article  Google Scholar 

  189. M.G. Lim, J.C. Chang, D.P. Schultz, R.T. Howe, R.M. White: Polysilicon Microstructures to Characterize Static Friction, Proc. IEEE Micro Electro Mechanical Systems (IEEE, New York 1990) pp.82–88

    Google Scholar 

  190. U. Beerschwinger, S.J. Yang, R.L. Reuben, M.R. Taghizadeh, U. Wallrabe: Friction measurements on LIGA-processed microstructures, J. Micromech. Microeng. 4, 14–24 (1994)

    Article  CAS  Google Scholar 

  191. D. Matheison, U. Beerschwinger, S.J. Young, R.L. Rueben, M. Taghizadeh, S. Eckert, U. Wallrabe: Effect of progressive wear on the friction characteristics of nickel LIGA processed rotors, Wear 192, 199–207 (1996)

    Article  Google Scholar 

  192. H. Liu, B. Bhushan: Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy 100, 391–412 (2004)

    Article  CAS  Google Scholar 

  193. G. Wei, B. Bhushan, S.J. Jacobs: Nanomechanical characterization of digital multilayered thin film structures for digital micromirror devices, Ultramicroscopy 100, 375–389 (2004)

    Article  CAS  Google Scholar 

  194. G. Wei, B. Bhushan, S.J. Jacobs: Nanoscale indentation fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices, J. Vac. Sci. Technol. A 22, 1397–1405 (2004)

    Article  CAS  Google Scholar 

  195. H. Liu, B. Bhushan: Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscope, J. Vac. Sci. Technol. A 22, 1388–1396 (2004)

    Article  CAS  Google Scholar 

  196. H. Liu, B. Bhushan: Bending and fatigue study on a nanoscale hinge by an atomic force microscope, Nanotechnology 15, 1246–1251 (2004)

    Article  Google Scholar 

  197. B. Bhushan, H. Liu: Characterization of nanomechanical and nanotribological properties of digital micromirror devices, Nanotechnology 15, 1785–1791 (2004)

    Article  Google Scholar 

  198. R.C. Jaeger: Introduction to Microelectronic Fabrication, Vol.Vol. 5 (Addison–Wesley, Reading 1988)

    Google Scholar 

  199. J.W. Judy: Microelectromechanical systems (MEMS): Fabrication, design, and applications, Smart Mater. Struct. 10, 1115–1134 (2001)

    Article  Google Scholar 

  200. G. Brewer: Electron-Bean Technology in Microelectronic Fabrication (Academic, New York 1980)

    Google Scholar 

  201. K. Valiev: The Physics of Submicron Lithography (Plenum, New York 1992)

    Google Scholar 

  202. E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4, 35–56 (1986)

    Article  CAS  Google Scholar 

  203. C.R. Friedrich, R.O. Warrington: Surface Characterization of Non-Lithographic Micromachining. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp.73–84

    Google Scholar 

  204. M. Tanaka: Development of desktop machining microfactory, Riken Rev. 34, 46–49 (April 2001)

    Google Scholar 

  205. Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)

    Article  CAS  Google Scholar 

  206. H. Becker, C. Gaertner: Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis 21, 12–26 (2000)

    Article  CAS  Google Scholar 

  207. Y. Xia, E. Kim, X.M. Zhao, J.A. Rogers, M. Prentiss, G.M. Whitesides: Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347–349 (1996)

    Article  CAS  Google Scholar 

  208. S.Y. Chou, P.R. Krauss, P.J. Renstrom: Imprint lithography with 25-nanometer resolution, Science 272, 85–87 (1996)

    Article  CAS  Google Scholar 

  209. A. Kumar, G.M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)

    Article  CAS  Google Scholar 

  210. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides: Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27–40 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2008). Nanotribology and Materials Characterization of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_22

Download citation

Publish with us

Policies and ethics