Skip to main content

Micro-computed tomography for studies on Entobia: transparent substrate versus modern technology

  • Chapter
Current Developments in Bioerosion

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

Endolithic bioerosion is difficult to analyse and to describe, and it usually requires damaging of the sample material. Sponge erosion (Entobia) may be one of the most difficult to evaluate, as it is simultaneously macroscopically inhomogeneous and microstructurally intricate. We studied the bioerosion traces of the two Australian sponges Cliona celataand Cliona orientaliswith modern technology: high resolution X-ray micro-computed tomography. Micro-CT allows non-destructive visualisation of live and dead structures in three dimensions and was compared to traditional microscopic methods. Micro-CT and microscopy showed that C. celatabioerosion was more intense in the centre and branched out in the periphery (21 vs. 9% substrate removed). In contrast, C. orientalisproduced a dense, even meshwork and caused an overall more intense erosion pattern than C. celata(48 central vs. 42% marginal substrate removed). Extended pioneering filaments were not usually found at the margins of the studied sponge erosion, but branches ended abruptly or tapered to points. Results obtained with micro-CT were similar in quality to observations from transparent optical spar under the dissecting microscope. Microstructures could not be resolved as well with micro-CT as anticipated. Even though sponge scars and sponge chips were easily recognisable on maximum magnification micro-CT images, they lacked the detail that is available from SEM. Other drawbacks of micro-CT involve high costs and presently limited access. Even though micro-CT cannot presently replace traditional techniques such as epoxy resin casts viewed by SEM, we obtained valuable information. Especially for the possibility to measure endolithic pore volumes, we regard micro-CT as a very promising tool that will continue to be optimised. A combination of different methods will produce the best results in the study of Entobia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker LC, Reaka-Kudla ML (1997) The use of tomography in assessing bioerosion in corals. Proc 8th Int Coral Reef Symp, Smithson Trop Res Inst, Panama 1996, 2:1819-1824

    Google Scholar 

  • Bergman KM (1983) The distribution and ecological significance of the boring sponge Cliona viridison the Great Barrier Reef, Australia. MSc Thesis, Geol Dept McMaster Univ, Hamilton / Canada, 69 pp

    Google Scholar 

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O (2007) Skeletal response of Lophelia pertusa(Scleractinia) to bioeroding sponge infestation visualised with microcomputed tomography. Facies 53:157-176

    Article  Google Scholar 

  • Borchiellini C, Alivon E, Vacelet J (2004) The systematic position of Alectona(Porifera, Demospongiae): a tetractinellid sponge. Boll Mus Ist Univ Genova 68:209-217

    Google Scholar 

  • Bromley RG, D’Alessandro A (1989) Ichnological study of shallow marine endolithic sponges from the Italian coast. Riv Ital Paleont Stratigr 95:279-314

    Google Scholar 

  • Bromley RG, Tendal OS (1973) Example of substrate competition and phobotropism between two clionid sponges. J Zool London 169:151-155

    Article  Google Scholar 

  • Bromley RG, Beuck L, Taddei Ruggiero E (this volume) Endolithic sponge versus terebratulid brachiopod, Pleistocene, Italy: accidental symbiosis, bioclaustration, deformity and death. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 361-368

    Google Scholar 

  • Bronn HG (1837) Lethaea Geognostica oder Abbildungen und Beschreibungen der für die Gebirgs-Formationen bezeichnendsten Versteinerungen. Schweizerbart, Stuttgart, 1:1-544 and plates

    Google Scholar 

  • Calcinai B, Arillo A, Cerrano C, Bavestrello G (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. J Mar Biol Assoc UK 83:37-39

    Google Scholar 

  • Calcinai B, Bavestrello G, Cerrano C (2004) Bioerosion micro-patterns as diagnostic characteristics in boring sponges. Boll Mus Ist Univ Genova 68:229-238

    Google Scholar 

  • Farber L, Tardos G, Michaels J (2003) The use of X-ray tomography to study the porosity and morphology of granules. Powder Technol 132:57-63

    Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Optic Soc Amer, Ser A 1:612-619

    Google Scholar 

  • Fischer MP (1868) Recherches sur les éponges perforantes fossiles. Nuov Arch Mus Hist Nat Paris 4:117-173

    Google Scholar 

  • Freudenthal GH (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticumsp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Protozool 9:45-52

    Google Scholar 

  • Grant RE (1826) Notice of a new zoophyte (Cliona celata, Gr.) from the Firth of Forth. Edinburgh N Phil J 1:78-81

    Google Scholar 

  • Hancock A (1849) On the excavating powers of certain sponges belonging to the genus Cliona; with descriptions of several new species, and an allied generic form. Ann Mag Nat Hist, Ser 2, 3:321-348

    Google Scholar 

  • Hancock A (1867) Note on the excavating sponges; with descriptions of four new species. Ann Mag Nat Hist, Ser 3, 19:229-242

    Google Scholar 

  • Hoeksema BW (1983) Excavation patterns and spiculae dimensions of the boring sponge Cliona celatafrom the SW Netherlands. Senckenbergiana Marit 15:55-85

    Google Scholar 

  • Itoh M, Shimazu A, Hirata I, Yoshida Y, Shintani H, Okazaki M (2004) Characterization of CO3Ap-collagen sponges using X-ray high-resolution microtomography. Biomaterials 25:2577-2583

    Article  Google Scholar 

  • Johnson JY (1899) Notes on some sponges belonging to the Clionidae obtained at Madeira. J Roy Microscop Soc 9:461-463

    Google Scholar 

  • Lin C, Miller J (1996) Cone beam X-ray microtomography for three-dimensional liberation analysis in the 21st century. Int J Miner Process 47:61-73

    Article  Google Scholar 

  • Lindgren NG (1897) Beitrag zur Kenntnis der Spongienfauna des Malayischen Archipels und der chinesischen Meere. Zool Anz 20:486-487

    Google Scholar 

  • PANGAEA (accessed June 25th, 2007) Publishing network for geoscientific and environmental data. http://www.pangaea.de/

    Google Scholar 

  • Ramakrishna K, Muralidhar K, Munshi P (2006) Beam-hardening in simulated X-ray tomography. Nondestruct Test Eval Int 39:449-457

    Google Scholar 

  • Rosell D, Uriz M-J (2002) Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org Diver Evol 2:55-86

    Article  Google Scholar 

  • Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contr Zool 165:1-32

    Google Scholar 

  • Rützler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203-216

    Article  Google Scholar 

  • Schönberg CHL (2000) Bioeroding sponges common to the central Australian Great Barrier Reef: description of three new species, two new records, and additions to two previously described species. Senckenbergiana Marit 30:161-221

    Article  Google Scholar 

  • Schönberg CHL (2001) Estimating the extent of endolithic tissue of a Great Barrier Reef clionid sponge. Senckenbergiana Marit 31:29-39

    Google Scholar 

  • Schönberg CHL (2003) Substrate effects on the bioeroding demosponge Cliona orientalis. 2. Substrate colonisation and tissue growth. Publ Stn Zool Napoli Mar Ecol 24:59-74

    Google Scholar 

  • Schönberg CHL (2006) Growth and erosion of the zooxanthellate Australian bioeroding sponge Cliona orientalisare enhanced in light. In: Suzuki Y, Nakamori T, Hidaka M, Kayanne H, Casareto BE, Nadao K, Yamano H, Tsuchiya M (eds) Proc 10th Int Coral Reef Symp, Okinawa, Japan, pp 166-174

    Google Scholar 

  • Schönberg CHL, Loh WK (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis. Mar Ecol Prog Ser 299:157-166

    Article  Google Scholar 

  • Schönberg CHL, Grass S, Heiermann AT (2006) Cliona minuscula, sp. nov. (Hadromerida: Clionaidae) and other bioeroding sponges that only contain tylostyles. Zootaxa 1312:1-24

    Google Scholar 

  • Tapanila L (this volume) The medium is the message: imaging a complex microboring (Pyrodendrina cupraigen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 123-146

    Google Scholar 

  • Thiele J (1900) Kieselschwämme von Ternate. 1. Abh Senckenb Natf Ges 25:19-80

    Google Scholar 

  • Topsent E (1888) Contribution à l’étude des Clionides. Mém Soc Zool France 2:1-165

    Google Scholar 

  • Topsent E (1905) Cliothosa seurati, Clionide nouvelle des Îles Gambier. Bull Mus Hist Nat Paris 2:94-96

    Google Scholar 

  • Van Geet M, Swennen R, Wevers M (2001) Towards 3-D petrography: application of microfocus computer tomography in geological science. Computer Geosci 27:1091-1099

    Article  Google Scholar 

  • Wesche SJ, Adlard RD, Hooper JNA (1997) The first incidence of clionid sponges (Porifera) from the Sydney rock oyster Saccostrea commercialis (Iredale and Roughley, 1933).Aquaculture 157:173-180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schönberg, C.H., Shields, G. (2008). Micro-computed tomography for studies on Entobia: transparent substrate versus modern technology. In: Wisshak, M., Tapanila, L. (eds) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_8

Download citation

Publish with us

Policies and ethics