Element Distinctness and Sorting on One-Tape Off-Line Turing Machines

  • Holger Petersen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4910)


We investigate off-line Turing machines equipped with a two-way input-tape and one work-tape.

It is shown that the Element Distinctness Problem (EDP) for m binary strings of length ℓ = O(m/log2 m) can be solved in time O(m 3/21/2) and space O(m 1/21/2) on a nondeterministic machine. This is faster than the best sorting algorithm on the computational model and optimal if time and space are considered simultaneously.

For deterministic machines we give an optimal algorithm that can sort m binary strings consisting of ℓ bits each in O(m 3/2ℓ) steps, provided that ℓ = O(m 1/4). By modifying the solution we obtain the time bound O(m 3/2ℓ) and the space bound O(m 1/22) for the EDP.


Time Complexity Turing Machine Binary String Sorting Algorithm Current Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Amram, A.M., Berkman, O., Petersen, H.: Element distinctness on one-tape Turing machines. Acta Informatica 40, 81–94 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Book, R.V., Greibach, S.: Quasi realtime languages. Mathematical Systems Theory 4, 97–111 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum algorithms for element distinctness. SIAM Journal on Computing 34, 1324–1330 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dietzfelbinger, M., Maass, W., Schnitger, G.: The complexity of matrix transposition on one-tape off-line Turing machines. Theoretical Computer Science 82, 113–129 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case access time. Journal of the Association for Computing Machinery 31, 538–544 (1984)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Karchmer, M.: Two time-space tradeoffs for element distinctness. Theoretical Computer Science 47, 237–246 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  8. 8.
    López-Ortiz, A.: New lower bounds for element distinctness on a one-tape Turing machine. Information Processing Letters 51, 311–314 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Petersen, H.: Bounds for the element distinctness problem on one-tape Turing machines. Information Processing Letters 81, 75–79 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Slot, C., van Emde Boas, P.: The problem of space invariance for sequential machines. Information and Computation 77, 93–122 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Szepietowski, A.: The element distinctness problem on one-tape Turing machines. Information Processing Letters 59, 203–206 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wiedermann, J.: Optimal algorithms for sorting on single-tape Turing machines. In: van Leeuwen, J. (ed.) Algorithms, Software, Architecture, Proceedings of the IFIP 12th World Computer Congress, Madrid, Spain, vol. I, pp. 306–314. Elsevier Science Publishers, Amsterdam (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Holger Petersen
    • 1
  1. 1.Univ. Stuttgart, FMIStuttgart

Personalised recommendations