Skip to main content

Elastic Scattering Spectroscopy and Optical Coherence Tomography

  • Chapter
Optical Coherence Tomography

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 10k Accesses

Elastically scattered light contains information about the scattering medium with which it has interacted. The elastic scattering process can be interpreted as a change in the momentum of light due to its interaction with a scattering object. By analyzing this change in momentum, structural information such as the size, shape and organization of scattering objects can be recovered. Recently, light scattering techniques have been developed for examining biological cells and tissues both in the laboratory and the clinic. These techniques are broadly termed elastic scattering spectroscopy (ESS).

In this chapter, the development of cell and tissue analysis methods based on the combination of ESS and OCT are discussed. Background information consisting of an overview of the advantages and theoretical basis of ESS is presented first. This is followed by a survey of ESS schemes which employ coherence gating to isolate photons which have scattered once. Finally, a review of recent experimental results which use combinations of ESS and OCT methods is presented, including basic validation experiments, studies of in vitro cells and pre-clinical studies of ex vivo tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1969).

    Google Scholar 

  2. A.G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, No. 3, 34 (1995).

    Article  Google Scholar 

  3. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C.W. Boone, R.R. Dasari, and M.S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE. J. Sel. Top. Quantum Electron. 7, 887-893 (2001).

    Article  CAS  Google Scholar 

  4. http://omlc.ogi.edu/calc/mie calc.html; http://atol.ucsd.edu/~pflatau/scatlib/

  5. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L. T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative mea-surement of epithelial cellular structures in situ”, IEEE J. Sel. Top. Quantum Electron., 5, 1019-1026, (1999).

    Article  CAS  Google Scholar 

  6. L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, and M.S. Feld, “Observation of Periodic Fine Structure in Reflectance from Biological Tissue: A New Technique for Measuring Nuclear Size Distribution,” Phys. Rev. Lett. 80, 627-630 (1998).

    Article  CAS  Google Scholar 

  7. V. Backman, et al., “Detection of preinvasive cancer cells,” Nature,406, 35 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. M.B. Wallace, L.T. Perelman, V. Backman, J.M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S.J. Shields, I. Itzkan, R.R. Dasari, J. Van Dam, and M.S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119, 677-682 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. G. Zonios, L. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. Feld, “Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,” Appl. Opt. 38, 6628-6637 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. S.G. Demos, and R.R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161-163 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. I.J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elasticscattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221-228 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, and S. P Poplack. “Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo” J. Biomed. Opt. 10, 051704 (2005).

    Article  PubMed  Google Scholar 

  13. M.G. Muller, T.A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z.M. Wang, C.W. Boone, R.R. Dasari, S.M. Shapshay, and M.S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma”. Cancer 97, 1681-1692 (2003).

    Article  PubMed  Google Scholar 

  14. I. Georgakoudi, B.C. Jacobson, J. Van Dam, V. Backman, M.B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G.A. Thomas, L.T. Perelman, and M.S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus”. Gastroenterology 120, pp. 1620-1629 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. I. Georgakoudi, E.E. Sheets, M.G. Muller, V. Backman, C.P. Crum, K. Badizadegan, R.R. Dasari, and M.S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo”. Am. J. Obstet. Gynecol. 186, pp. 374-382 (2002).

    Article  PubMed  Google Scholar 

  16. A. Wax, C. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, and M.S. Feld, “Cell organization and sub-structure measured using angle-resolved low coherence interferometry.” Biophys. J. 82, pp. 2256-2264 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Mourant, J.R., T.M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J.P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures”. J. Biomed. Opt. 7, pp. 378-387 (2002); Drezek, R., A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements”. Appl. Opt. 38, pp. 3651-3661 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scatter-ing from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. J. W. Goodman, Introduction to Fourier Optics. New York: McGrawHill, 1996.

    Google Scholar 

  20. H. K. Roy, Y. Liu, R.K. Wali, Y.L. Kim, A.K. Kromine, M.J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis”. Gastroenterology 126, pp. 1071-1081 (2004).

    Article  PubMed  Google Scholar 

  21. M. T. Valentine, A. K. Popp, P. D. Kaplan, and D. A. Weitz, “Microscope-based static light scattering apparatus,” Opt. Lett. 26, 890-892 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691-1700 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. C. Yang, L.T. Perelman, A. Wax, R.R. Dasari and M. S. Feld, “Feasibility of Field-Based Light Scattering Spectroscopy,”, J. Biomed. Opt. 5(2), 138 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. A. Wax, C.H. Yang, R.R. Dasari, and M.S. Feld, “Measurement of angu-lar distributions by use of low-coherence interferometry for light-scattering spectroscopy,” Optics Letters 26(6), 322-324 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R.R. Dasari, and M.S. Feld, “Determination of particle size using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737-744 (2002).

    Article  Google Scholar 

  26. J. W. Pyhtila, R.N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Optics Express 11(25): pp. 3473-3484 (2003).

    PubMed  Google Scholar 

  27. A. Wax, and J.E. Thomas, “Optical heterodyne imaging and Wigner phase space distributions,” Optics Letters 21(18): pp. 1427-1429 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. R. Leitgeb, R., C.K. Hitzenberger, and A.F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express 11(8), 889-894 (2003);.J. F. de Boer, et al., “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21): pp. 2067-2069 (2003);. Choma, M.A., et al., “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11(18): pp. 2183-2189 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. J. W. Pyhtila, and A. Wax, “Rapid, depth-resolved light scattering mea-surements using Fourier domain, angle-resolved low coherence interferometry,” Optics Express 12(25), 6178-6183 (2004).

    Article  PubMed  Google Scholar 

  30. A. Wax, “Low-coherence light-scattering calculations for polydisperse size distributions,” J. Opt. Soc. Am. A 22, 256-261 (2005).

    Article  Google Scholar 

  31. J. W. Pyhtila, and A. Wax, “Coherent light scattering by in vitro cell arrays observed with angle-resolved low-coherence interferometry,” Proc. SPIE Vol. 5690, pp. 334-341, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX; Valery V. Tuchin, Joseph A. Izatt, James G. Fujimoto; Eds. (2005).

    Article  Google Scholar 

  32. V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis. SPIE Press, Bellingham, WA (2000).

    Google Scholar 

  33. Einstein, A.J., H.S. Wu, and J. Gil, “Self-affinity and lacunarity of chromatin texture in benign and malignant breast epithelial cell nuclei”. Phys. Rev. Lett. 80, pp. 397-400 (1998).

    Article  CAS  Google Scholar 

  34. A. Wax, C.H. Yang, M.G. Muller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, and M.S. Feld, “In situ detection of neoplastic trans-formation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry”. Cancer Research 63, pp. 3556-3559 (2003).

    CAS  PubMed  Google Scholar 

  35. A. Wax, J.W. Pyhtila, R.N. Graf, R. Nines, C.W. Boone, R.R. Dasari, M.S. Feld, V.E. Steele, and G.D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low coherence interferometry”. J. Biomed. Opt. 10, pp. 051604 (2005).

    Article  PubMed  Google Scholar 

  36. J.W. Pyhtila, J.D. Boyer, K.J. Chalut and A. Wax, “Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006).

    Article  PubMed  Google Scholar 

  37. T.Q. Xie, D. Mukai, S.G. Guo, M. Brenner, and Z.P. Chen, “Fiber-optic-bundle-based optical coherence tomography”. Opt. Lett. 30, p. 1803-1805 (2005).

    Article  PubMed  Google Scholar 

  38. D.C. Adler, T.H. Ko, P.R. Herz, and J.G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation”. Optics Express 12, pp. 5487-5501 (2004); C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450-5462 (2005).

    Article  Google Scholar 

  39. A. Wax, C.H. Yang, and J.A. Izatt, “Fourier-domain low-coherence interferom-etry for light-scattering spectroscopy”. Opt. Lett. 28, pp. 1230-1232 (2003).

    Article  PubMed  Google Scholar 

  40. R.N. Graf, and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry”. Optics Express13, pp.4693-4698 (2005).

    Article  PubMed  Google Scholar 

  41. Kulkarni, M.D. and J.A. Izatt, in OSA Technical Digest Series. 1996, Opti-cal Society of America. pp. 59-60; Morgner, U., et al., Spectroscopic optical coherence tomography. Optics Letters, 2000. 25(2): pp. 111-113.

    Google Scholar 

  42. Fercher, A.F., W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239-303 (2003).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wax, A., Pyhtila, J.W., Yang, C., Feld, M.S. (2008). Elastic Scattering Spectroscopy and Optical Coherence Tomography. In: Drexler, W., Fujimoto, J.G. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77550-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77550-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77549-2

  • Online ISBN: 978-3-540-77550-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics