Skip to main content

Holographic Optical Coherence Imaging

  • Chapter
Optical Coherence Tomography

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 10k Accesses

Holographic optical coherence imaging (OCI) is a wide-field depth-gated direct imaging approach that acquires en face images from a fixed depth inside scattering media without the need for computed reconstruction [1]. A holographic real-time film (most commonly a photorefractive quantum well structure [2]) provides the coherent demodulation that extracts information-bearing light from the multiply-scattered statistically incoherent background. The photorefractive effect responds to the gradient in intensity, rather than to direct intensity, and records only coherent light interfering with a reference wave. The hologram is read out by diffracting a reconstruction beam into a CCD camera. The diffracted image is “background free” because the nominally uniform background is not recorded. The real-time character of the holographic film makes it possible to interrogate tissue interactively by viewing on a video monitor, or enables high voxel-rate recording to capture relatively large tissue volumes to computer. The real-time character also makes it adaptive and enables it to compensate mechanical motions in the optical system.

This chapter gives an overview of the principles of holographic OCI. It begins with a description of holography as spatial heterodyne detection, and continues with the origin and role of speckle in multichannel illumination of tissue, the development of the technology, its sensitivity and dynamic range, and the current state of the art. The introductory sections describe the advantages of direct imaging (without computed reconstruction), the ability to perform Fourier optical imaging, and the role of speckle and statistical optics. Image-domain holography (IDH) and Fourier-domain holography (FDH) are described, and the better performance of FDH (that brings the system sensitivity to nearly – 100 dB) is explained. Holography in the Fourier domain also has the capability for phase-contrast imaging that can acquire small sub-wavelength surface relief despite long coherence length. Phase contrast coherence-domain imaging can detect long-range spatial structure that is invisible to point-scanning TD-OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Jeong, L. Peng, J.J. Turek, M.R. Melloch, D.D. Nolte, Appl. Opt., 44, 1798 (2005).

    Article  PubMed  Google Scholar 

  2. D.D. Nolte, J. Appl. Phys., 85, 6259 (1999).

    Article  CAS  Google Scholar 

  3. J.D. Briers, Opt. Eng. 32, 277 (1993).

    Article  Google Scholar 

  4. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, 2000).

    Google Scholar 

  5. C. Dunsby, P.M.W. French, J. Phys. D 36, R207 (2003).

    Article  CAS  Google Scholar 

  6. K.A. Stetson, J. Opt. Soc. Am. 57, 1060 (1967).

    Article  Google Scholar 

  7. K.G. Spears, J. Serafin, N.H. Abramson, X. Zhu, H. Bjelkhagen, IEEE Trans. Biomed. Eng. 36, 1210 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, Opt. Lett. 16,487 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. P. Massatsch, F. Charriere, E. Cuche, P. Marquet, C.D. Depeursinge, Appl. Opt. 44, 1806 (2005).

    Article  PubMed  Google Scholar 

  10. S.C.W. Hyde, R. Jones, N.P. Barry, J.C. Dainty, P.M.W. French, K. M. Kwolek, D.D. Nolte, M.R. Melloch, IEEE J. Sel. Top. Quant. Electron., 2, 965 (1996).

    Article  CAS  Google Scholar 

  11. S.H. Yun, G.J. Tearney, J.F.d. Boer, N. Iftimia, B.E. Bouma, Opt. Express 11, 2953 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. L. Vabre, A. Dubois, A.C. Boccara, Opt. Lett. 27, 530 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, Appl. Phys. Lett. 75, 363 (1999).

    Article  Google Scholar 

  14. C. Dunsby, Y. Gu, Z. Ansari, P.M.W. French, L. Peng, P. Yu, M.R. Melloch, D.D. Nolte, Opt. Commun., 219, 87 (2003).

    Article  CAS  Google Scholar 

  15. A.V. Mamaev, L.L. Ivleva, N.M. Polozkov, V.V. Shkunov, Photorefractive visu-alisation through opaque scattering media, Paper presented at Conference on Lasers and Electro-Optics, 1993.

    Google Scholar 

  16. S.C.W. Hyde, N.P. Barry, R. Jones, J.C. Dainty, P.M.W. French, Opt. Lett. 20, 2330 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. N.P. Barry, R. Jones, S.C.W. Hyde, J.C. Dainty, P.M.W. French, Electron. Lett. 33,1732 (1997).

    Article  Google Scholar 

  18. Q.N. Wang, R.M. Brubaker, D.D. Nolte, M.R. Melloch, J. Opt. Soc. Am. B 9, 1626 (1992).

    Article  CAS  Google Scholar 

  19. R. Jones, S.C.W. Hyde, M.J. Lynn, N.P. Barry, J.C. Dainty, P.M. W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Appl. Phys. Lett. 69, 1837 (1996).

    Article  CAS  Google Scholar 

  20. R. Jones, N.P. Barry, S.C.W. Hyde, P.M.W. French, K.M. Kwolek, D. D. Nolte, M.R. Melloch, Opt. Lett. 23, 103 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C.W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P.M.W. French, D.D. Nolte, W. Headley, M.R. Melloch, Sel. Top. Quant. Electron. 7, 878 (2001).

    Article  CAS  Google Scholar 

  22. M. Tziraki, R. Jones, P.M.W. French, M.R. Melloch, D.D. Nolte, Appl. Phys. B 70 151 (2000)

    Article  CAS  Google Scholar 

  23. R. Jones, N.P. Barry, S.C.W. Hyde, M. Tziraki, J.C. Dainty, P.M. W. French, D.D. Nolte, K.M. Kwolek, M.R. Melloch, IEEE J. Sel. Top. Quant. Electron. 4 360 (1998).

    Article  CAS  Google Scholar 

  24. P. Yu, M. Mustata, P.M.W. French, J.J. Turek, M.R. Melloch, D.D. Nolte, Appl. Phys. Lett. 83 575 (2003).

    Article  CAS  Google Scholar 

  25. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P.M.W. French, D.D. Nolte, M.R. Melloch, Opt. Lett. 26, 334 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. P. Yu, M. Mustata, W. Headley, D.D. Nolte, J.J. Turek, P.M.W. French, in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, SPIE, vol. 4619 (2002).

    Google Scholar 

  27. P. Yu, M. Mustata, L.L. Peng, J.J. Turek, M.R. Melloch, P.M. W. French, D.D. Nolte, Appl. Opt. 43 4862 (2004).

    Article  PubMed  Google Scholar 

  28. P. Yu, L. Peng, M. Mustata, J.J. Turek, M.R. Melloch, D.D. Nolte, Opt. Lett. 29,68 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. K. Jeong, L.L. Peng, D.D. Nolte, and M.R. Melloch, Appl. Opt. 43, 3802 (2004).

    Article  PubMed  Google Scholar 

  30. K. Jeong, J.J. Turek, D.D. Nolte, Phase-contrast optical coherence imaging of tissue, Paper presented at Progress in Biomedical Optics and Imaging -Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005.

    Google Scholar 

  31. D.D. Nolte, D.H. Olson, G.E. Doran, W.H. Knox, A.M. Glass, J. Opt. Soc. Am. B7, 2217 (1990).

    Google Scholar 

  32. D.D. Nolte, U.S. Patent No. 5,004,325, 1991

    Google Scholar 

  33. D.D. Nolte, T. Cubel, L.J. Pyrak-Nolte, and M.R. Melloch, J. Opt. Soc. Am. B, 18, 195 (2001).

    Article  CAS  Google Scholar 

  34. I. Lahiri, L.J. Pyrak-Nolte, D.D. Nolte, M.R. Melloch, R.A. Kruger, G.D. BAcher, M.B. Klein, Appl. Phys. Lett. 73, 1041 (1998).

    Article  CAS  Google Scholar 

  35. Y. Ding, R.M. Brubaker, D.D. Nolte, M.R. Melloch, A.M. Weiner, Opt. Lett. 22,718 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Y. Ding, D.D. Nolte, M.R. Melloch, A.M. Weiner, IEEE J. Sel. Top. Quant. Electron. 4, 332 (1998).

    Article  CAS  Google Scholar 

  37. Y. Ding, A.M. Weiner, M.R. Melloch, D.D. Nolte, Appl. Phys. Lett. 75 3255 (1999).

    Article  CAS  Google Scholar 

  38. S. Iwamoto, H. Kageshima, T. Yuasa, M. Nishioka, T. Someya, Y. Arakawa, K. Fukutani, T. Shimura, K. Kuroda, J. Appl. Phys. 89 5889 (2001).

    Article  CAS  Google Scholar 

  39. S. Iwamoto, S. Taketomi, H. Kageshima, M. Nishioka, T. Someya, Y. Arakawa, K. Fukutani, T. Shimura, K. Kuroda, Opt. Lett. 26 22 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. M. Dinu, K. Nakagawa, M.R. Melloch, A.M. Weiner, D.D. Nolte, J. Opt. Soc. Am. B 17, 1313 (2000).

    Article  CAS  Google Scholar 

  41. M. Dinu, D.D. Nolte, M.R. Melloch, Phys. Rev. B, 56 1987 (1997).

    Article  CAS  Google Scholar 

  42. A.M. Davis, M.A. Choma, J.A. Izatt, J. Biomed. Opt. 10 (2005).

    Google Scholar 

  43. C.A. Tyson, J.M. Frazier, in Methods in Toxicology, vol. 1B (Academic New York, 1994).

    Google Scholar 

  44. L. de Ridder, Anticancer Res., 17, 4119 (1997).

    CAS  PubMed  Google Scholar 

  45. K. Groebe, W. Mueller-Klieser, Int. J. Radiat. Oncol. Biol. Phys. 34, 395 (1996).

    CAS  PubMed  Google Scholar 

  46. R. Hamamoto, K. Yamada, M. Kamihira, S. Iijima, J. Biochem. (Tokyo) 124, 972 (1998).

    CAS  Google Scholar 

  47. G. Hamilton, Cancer Lett., 131, 29 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. P. Hargrave, P.W. Nicholson, D.T. Delpy, M. Firbank, Phys. Med. Biol. 41, 1067 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. L.A. Kunz-Schughart, M. Kreutz, R. Knuechel, Int. J. Exp. Pathol. 79, 1 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. R. Sutherland, W. Inch, J. McCredie, J. Kruuv, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 18, 491 (1970).

    Article  CAS  PubMed  Google Scholar 

  51. L.A. Kunz-Schughart, Cell Biol. Int. 23, 157 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. W. Mueller-Klieser, Biophys. J. 46, 343 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. P. Freyer, P.L. Schor, K.A. Jarrett, M. Neeman, L.O. Sillerud, Cancer Res., 51, 3831 (1991).

    CAS  PubMed  Google Scholar 

  54. W. Mueller-Klieser, Am. J. Physiol., 1109 (1997).

    Google Scholar 

  55. M. Mustata, Master’s Thesis in Physics (Purdue, West Lafayette, 2004).

    Google Scholar 

  56. D.E. Moreland, in Introduction to Biochemical Toxicology, 3rd ed. ed. by E. Hodgson, R.C. Smart (Wiley, New York 2001) p. 309.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nolte, D.D., Jeong, K., French, P.M.W., Turek, J. (2008). Holographic Optical Coherence Imaging. In: Drexler, W., Fujimoto, J.G. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77550-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77550-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77549-2

  • Online ISBN: 978-3-540-77550-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics