Skip to main content

Broad Bandwidth Laser and Nonlinear Optical Light Sources for OCT

  • Chapter
Optical Coherence Tomography

Optical coherence tomography (OCT) achieves very high axial image resolutions independent of focusing conditions, because the axial and transverse resolution are determined independently by different physical mechanisms. This implies that axial OCT resolution can be enhanced using broad bandwidth, low coherence length light sources. The light source not only determines axial OCT resolution via its bandwidth and central emission wavelength, but also determines the penetration in the sample (biological tissue), the contrast of the tomogram and OCT transverse resolution. A minimum output power with low amplitude noise is also necessary to enable high sensitivity and high speed — real time — OCT imaging. Furthermore, ultrabroad bandwidth light sources emitting at different wavelength regions might also enable a potential extension of OCT, e.g., spectroscopic OCT. Hence, it is obvious that the light source is the key technological parameter for an OCT system and proper choice is imperative [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unterhuber, A., et al., Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Physics in Medicine and Biology, 2004. 49 (7): p. 1235-1246.

    Article  CAS  PubMed  Google Scholar 

  2. Maiman, T.H., Stimulated optical radiation in ruby. Nature, 1960. 182: p. 493-494.

    Article  Google Scholar 

  3. Moulton, P.F., Ti-doped sapphire: tunable solid-state laser. Optics News, 1982. 11: p. 9.

    Google Scholar 

  4. Wagenblast, P., et al., Diode-pumped 10-fs Cr3+ :LiCAF laser. Opt. Lett., 2003. 28(18): p. 1713-1715.

    Article  CAS  PubMed  Google Scholar 

  5. Uemura, S. and K. Torizuka, Development of a Diode-Pumped Kerr-Lens Mode-Locked Cr:LiSAF laser. IEEE Journal of Quantum Electronics, 2003. 39: p. 68-73.

    Article  CAS  Google Scholar 

  6. Bouma, B., et al., High-Resolution Optical Coherence Tomographic Imaging Using a Mode-Locked Ti-Al2 O3 Laser Source. Optics Letters, 1995. 20(13): p. 1486-1488.

    Article  CAS  PubMed  Google Scholar 

  7. Spence, D.E., P.N. Kean, and W. Sibbett, Opt. Lett., 1991. 16(42).

    Google Scholar 

  8. Brabec, T., et al., Kerr lens mode locking. Opt. Lett., 1992. 17.

    Google Scholar 

  9. Fork, R.L., O.E. Martinez, and J.P. Gordon, Negative dispersion using pairs of prisms. Opt. Lett., 1984. 9: p. 150-152.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, J., et al., Pulse evolution is a broad-bandwidth Ti:sapphire laser. Opt. Lett., 1994. 19: p. 1149-1151.

    CAS  PubMed  Google Scholar 

  11. Szipöcz, R., et al., Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett., 1994. 19(3): p. 201-203.

    Article  Google Scholar 

  12. F.X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, Design and fabrication of double-chirped mirrors, Opt. Lett., 1997. 22: p. 831-833.

    Article  PubMed  Google Scholar 

  13. Bouma, B.E., et al., Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Optics Letters, 1996. 21(22): p. 1839-1841.

    Article  CAS  PubMed  Google Scholar 

  14. Ranka, J.K., R.S. Windeler, and A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000. 25(1): p. 25-27.

    Article  CAS  PubMed  Google Scholar 

  15. Birks, T.A., W.J. Wadsworth, and P.S.J. Russel, Generation of an ultra-broad supercontimuum in tapered fibers. Opt. Lett., 2000. 25(19): p. 1415-1417.

    Article  CAS  PubMed  Google Scholar 

  16. Newbury, N.R., et al., Noise amplification during supercontinuum generation in microstructured fibres. Opt. Lett., 2003. 28: p. 944-945.

    Article  CAS  PubMed  Google Scholar 

  17. Corwin, K.L., et al., Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Applied Physics B-Lasers and Optics, 2003. 77(2-3): p. 269-277.

    Article  CAS  Google Scholar 

  18. Ell, R., et al., Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett., 2001. 26: p. 373-375.

    Article  CAS  PubMed  Google Scholar 

  19. Bartels, A. and H. Kurz, Generation of broadband continuum generation by a Ti:sapphire oscillator with a 1 GHz repetition rate. Opt. Lett., 2002. 27: p. 1839-1841.

    Article  CAS  PubMed  Google Scholar 

  20. Drexler, W., et al., Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine, 2001. 7(4): p. 502-507.

    Article  CAS  PubMed  Google Scholar 

  21. Drexler, W., et al., In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 1999. 24(17): p. 1221-1223.

    Article  CAS  PubMed  Google Scholar 

  22. Morgner, U., et al., Spectroscopic optical coherence tomography. Optics Letters, 2000. 25(2): p. 111-113.

    Article  CAS  PubMed  Google Scholar 

  23. Fuji, T., et al., Generation of smooth, ultra-broadband spectra directly from a prismless Ti:sapphire laser. Applied Physics B-Lasers and Optics, 2003. 77(1): p. 125-128.

    Article  CAS  Google Scholar 

  24. Babic, D.I. and S.W. Corzine, Analytic expression for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 1992. 28: p. 514-524.

    Article  Google Scholar 

  25. Laporta, P. and V. Magni, Dispersive effects in the reflection of femtosecond optical pulses from broadband dielectric mirrors. Appl. Opt., 1985. 24: p. 2014-2020.

    Article  CAS  PubMed  Google Scholar 

  26. F.X. Kärtner, U. Morgner, T.R. Schibli, E.P. Ippen, J.G. Fujimoto, V. Scheuer, G. Angelow, and T. Tschudi, Ultrabroadband double-chirped mirror pairs for generation of octave spectra. J. Opt. Soc. Am., 2001. B 18: p. 882-895.

    Google Scholar 

  27. T.R. Schibli, O. Kuzucu, J. Kim, E.P. Ippen, J.G. Fujimoto, and F.X. Kärtner, V. Scheuer, G. Angelow, “Towards Single-Cycle Laser Systems,” Invited paper IEEE J. Selected Topics in Quantum Electronics, 2003. 4: p. 990-1001.

    Article  CAS  Google Scholar 

  28. Morgner, U., et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett., 1999. 24(6): p. 411-413.

    Article  CAS  PubMed  Google Scholar 

  29. Stingl, A., et al., Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett., 1995. 20: p. 602-604.

    Article  CAS  PubMed  Google Scholar 

  30. Morgner, U., et al., Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. Phys. Rev. Lett., 2001. 86(24): p. 5462-5.

    Article  CAS  PubMed  Google Scholar 

  31. Ramond, T.M., et al., Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator. Opt. Lett., 2002. 27(20): p. 1842-1844.

    Article  CAS  PubMed  Google Scholar 

  32. Schibli, T.R., et al., Continuum generation in a prismless Ti:sapphire laser. In: R.D. Miller, M.M. Murnsne, N.F. Scherer, A.M. Weinere (Eds.) Ultrafast Phenomena XIII, Chemical Physics, 2002: p. 131-133.

    Google Scholar 

  33. Unterhuber, A.et al., , Compact, low-cost Ti:Al2 O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 2003. 28(11): p. 905-907.

    Article  CAS  PubMed  Google Scholar 

  34. Kowalevicz, A.M.et al., , Ultralow-threshold Kerr-lens mode-locked Ti:Al2 O3 laser. Optics Letters, 2002. 27: p. 2037-2039.

    Article  CAS  PubMed  Google Scholar 

  35. Wagenblast, P.C., et al., Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+ :LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors. Opt. Lett., 2002. 27: p. 1726-1728.

    Article  CAS  PubMed  Google Scholar 

  36. Wagenblast, P.C., et al., Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+ :LiCAF laser. Optics Express, 2004. 12(14): p. 3257-3263.

    Article  PubMed  Google Scholar 

  37. Herrmann, J., Theory of Kerr-lens mode-locking: role of self-focusing and radially varying gain. Journal of Optical Socitey of America B,1994.11: p. 498-512.

    Article  Google Scholar 

  38. Chudoba, C., et al., All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 µm. Opt. Lett., 2001. 26(5): p. 292-294.

    Article  CAS  PubMed  Google Scholar 

  39. Prasankumar, R.P., et al., Self-starting mode locking in a Cr:forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films. Opt. Lett., 2002. 27(17): p. 1564-1566.

    Article  CAS  PubMed  Google Scholar 

  40. Herz, P.R., et al., Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. Optics Express, 2004. 12(15): p. 3532-3542.

    Article  PubMed  Google Scholar 

  41. Chen, Y., et al., Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy, 2007. 39(7): p. 599-605.

    Article  CAS  PubMed  Google Scholar 

  42. Ripin, D.J., et al., Generation of 20-fs pulses by a prismless Cr4+ :YAG laser. Opt. Lett., 2002. 27(1): p. 61-63.

    Article  CAS  PubMed  Google Scholar 

  43. Kaiser, P., E.A.J. Marcatili, and S.E. Miller, A new optical fiber. Bell Sys. Tech. J., 1973. 52: p. 265-269.

    Google Scholar 

  44. Chin, S.L., et al., The white light supercontinuum is indeed an ultrafast white light laser. Jpn. J. Appl. Phys. Part 2, 1999. 38: p. 126-128.

    Article  Google Scholar 

  45. Wang, Y.M., et al., Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 2003. 28(3): p. 182-184.

    Article  PubMed  Google Scholar 

  46. Marks, D.L., et al., Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. Optics Letters, 2002. 27(22): p. 2010-2012.

    Article  PubMed  Google Scholar 

  47. Považay, B., et al., Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002. 27(20): p. 1800-1802.

    Article  PubMed  Google Scholar 

  48. Bourquin, S., et al., Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber. Optics Express, 2003. 11(24): p. 3290-3297.

    Article  CAS  PubMed  Google Scholar 

  49. Tamura, K., et al., Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high power erbium-doped fibre amplifier. Opt. Lett., 1995. 20: p. 1631-1633.

    Article  CAS  PubMed  Google Scholar 

  50. Hartl, I., et al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 2001. 26(9): p. 608-610.

    Article  CAS  PubMed  Google Scholar 

  51. Gaeta, A.L., Nonlinear propagation and continuum generation in microstructured optical fibres. Opt. Lett., 2002. 27: p. 924-926.

    Article  PubMed  Google Scholar 

  52. Gu, X., et al., Frequency resolved optical gating and single shot spectral measurements reveal fine structure in microstructure-fibre-continuum. Opt. Lett., 2002. 27: p. 1174-1176.

    Article  PubMed  Google Scholar 

  53. Wang, Y.M., et al., Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography. Journal of the Optical Society of America a-Optics Image Science and Vision, 2005. 22(8): p. 1492-1499.

    Article  Google Scholar 

  54. Lim, H., et al., Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm. Optics Letters, 2005. 30(10): p. 1171-1173.

    Article  PubMed  Google Scholar 

  55. Humbert, G., et al., Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 2006. 14(4): p. 1596-1603.

    Article  CAS  PubMed  Google Scholar 

  56. G.S. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, M. Kaivola, Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers; Opt. Express, 2002. 10(20), 83-1098.

    Google Scholar 

  57. Wang, H. and A.M. Rollins, Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography. Appl. Opt., 2007. 46(10): p. 1787-94.

    Article  PubMed  Google Scholar 

  58. Aguirre, A.D., et al., Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006. 14(3): p. 1145-1160.

    Article  PubMed  Google Scholar 

  59. Spöler, F., et al., Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt. Lett., 2007. 15(17): p. 10832-10841.

    Google Scholar 

  60. Wang, H., C.P. Fleming, and A.M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths. Optics Express, 2007. 15(6): p. 3085-3092.

    Article  PubMed  Google Scholar 

  61. Hsiung, P.L., et al., Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source. Optics Express,2004.12(22): p. 5287-5295.

    Article  PubMed  Google Scholar 

  62. Bizheva, K., et al., Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103 (13): p. 5066-5071.

    Article  CAS  PubMed  Google Scholar 

  63. Nishizawa, N., et al., Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm. Opt. Lett., 2004. 29(24): p. 2846-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unterhuber, A. et al. (2008). Broad Bandwidth Laser and Nonlinear Optical Light Sources for OCT. In: Drexler, W., Fujimoto, J.G. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77550-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77550-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77549-2

  • Online ISBN: 978-3-540-77550-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics