Skip to main content

Detection of Phishing Attacks: A Machine Learning Approach

  • Chapter

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 226)

Introduction

Phishing is a form of identity theft that occurs when a malicious Web site impersonates a legitimate one in order to acquire sensitive information such as passwords, account details, or credit card numbers.Though there are several anti-phishing software and techniques for detecting potential phishing attempts in emails and detecting phishing contents on websites, phishers come up with new and hybrid techniques to circumvent the available software and techniques.

Keywords

  • Support Vector Machine
  • Machine Learn Approach
  • Conjugate Gradient Algorithm
  • Identity Theft
  • Automatic Model Selection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-77465-5_19
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-77465-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anti-Phishing Working Group, Phishing Activity Trends Report (2006), http://www.antiphishing.org/reports/apwg_report_mar_06.pdf

  • Litan, A.: Phishing Attack Victims Likely Targets for Identity Theft. Gartner Research (2004)

    Google Scholar 

  • Fette, I., Sadeh, N., Tomasic, A.: Learning to Detect Phishing Emails. Technical Report CMU-ISRI-06-112. Institute for Software Research International, Carnegie Mellon University (2006)

    Google Scholar 

  • Phishing Corpus (2006), http://monkey.org/~jose/wiki/doku.php?id=PhishingCorpus

  • Spam Assassin (2006) http://spamassassin.apache.org/

    Google Scholar 

  • Chapelle, O., Vapnik, V.: Model Selection for Support Vector Machines. Advances in Neural Information Processing Systems 12

    Google Scholar 

  • Cherkassy, V.: Model Complexity Control and Statistical Learning Theory. Journal of Natural Computing 1, 109–133 (2002)

    CrossRef  Google Scholar 

  • Lee, J.H., Lin, C.J.: Automatic Model Selection for Support Vector Machines. Technical report, Department of Computer Science and Information Engineering, National Taiwan University (2000)

    Google Scholar 

  • Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. Department of Computer Science and Information Engineering, National Taiwan University (2001)

    Google Scholar 

  • Chan, C.H., King, I.: Using Biased Support Vector Machine to Improve Retrieval Result in Image Retrieval with Self-organizing Map. In: Proceedings of International Conference on Neural Information Processing, pp. 714–719. Springer, Heidelberg (2004)

    Google Scholar 

  • Moller, A.F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6, 525–533 (1993)

    CrossRef  Google Scholar 

  • Vesanto, J., et al.: Self Organizing Map (SOM) Toolbox. In: Proceedings of Mat lab DSP Conference, Finland, pp. 35–40 (1999)

    Google Scholar 

  • Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  • Anderberg, M.: Cluster Analysis for Applications. Academic Press, London (1973)

    MATH  Google Scholar 

  • Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basnet, R., Mukkamala, S., Sung, A.H. (2008). Detection of Phishing Attacks: A Machine Learning Approach. In: Prasad, B. (eds) Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77465-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77465-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77464-8

  • Online ISBN: 978-3-540-77465-5

  • eBook Packages: EngineeringEngineering (R0)