Skip to main content

Motion Planning for Robotic Manipulation of Deformable Linear Objects

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 39))

Summary

A new motion planner is described to manipulate deformable linear objects (DLOs) and tie knots (both self-knots and knots around static objects) using two cooperating robotic arms. This planner blends new ideas with pre-existing concepts and techniques from knot theory, motion planning, and computational modeling. Unlike in traditional motion planning, the planner’s goal is a topological state of the DLO rather than some exact geometry. Using an input physical model of the DLO, it searches for a maniplation path by constructing a topologically-biased probabilistic roadmap in the configuration space of the DLO. Static needles are inserted to ensure the integrity of loops of the DLO during manipulation and to make plans robust to imperfections in the physical model. The planner was tested both in simulation and on a dual-PUMA-560 hardware platform to achieve various knots, like bowline, neck-tie, bow (shoe-lace), and stun-sail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.C.: The Knot Book. W.H. Freeman and Comp., New York (1994)

    MATH  Google Scholar 

  2. Brown, J., Latombe, J.C., Montgomery, K.: Real-time knot tying simulation. The Visual Computer J. 20(2-3), 165–179 (2004)

    Article  Google Scholar 

  3. Dhanik, A.: Development of a palpable virtual nylon thread and handling of bifurcations, Masters Thesis, NUS, Singapore (2005)

    Google Scholar 

  4. Alami, R., Siméon, T., Laumond, J.P.: A geometrical approach to planning manipulation tasks. In: Proc. Int. Symp. on Robotics Res., pp. 113–119 (1989)

    Google Scholar 

  5. Ladd, A.M., Kavraki, L.: Using motion planning for knot untangling. Int. J. Robotics Res. 23(7-8), 797–808 (2004)

    Article  Google Scholar 

  6. Lamiraux, F., Kavraki, L.: Planning paths for elastic objects under manipulation constraints. Int. J. Robotics Res. 20(3), 188–208 (2001)

    Article  Google Scholar 

  7. Koga, Y., Latombe, J.C.: On multi-arm manipulation planning. In: Proc. IEEE Int. Conf. Robotics and Aut., San Diego, CA (1994)

    Google Scholar 

  8. Kavraki, L., et al.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. on Rob. and Aut. 12, 566–580 (1996)

    Article  Google Scholar 

  9. Matsuno, T., et al.: Flexible rope manipulation by dual manipulator system using vision sensor. In: Proc. IEEE Int. Conf. Adv. Intel. Mech., Italy (2001)

    Google Scholar 

  10. Morita, T., et al.: Knot planning from observation. In: Proc. IEEE Int. Conf. Robotics and Aut., Taiwan (2003)

    Google Scholar 

  11. Pai, D.K.: Strands: interactive simulation of thin solids using cosserat models. In: Proc. Eurographics, Saarbruken, Germany (2002)

    Google Scholar 

  12. Remde, A., Henrich, D., Worn, H.: Pick-up deformable linear objects with industrial robots. In: Proc. Int. Symp. on Robotics, Japan (1999)

    Google Scholar 

  13. Saha, M.: Motion Planning with Probabilistic Roadmaps, Ph.D. Thesis, Department of Mechanical Engineering (2006)

    Google Scholar 

  14. Sanchez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Proc. Int. Symp. on Robotics Research, Australia (2001)

    Google Scholar 

  15. Schmidt, T.W., Henrich, D.: Manipulating deformable linear objects: robot motions in single and multiple contact points. In: Proc. Int. Symp. on Assembly and Task Planning, Japan (2001)

    Google Scholar 

  16. Siméon, T., et al.: Manipulation planning with probabilistic roadmaps. Int. J. Robotics Res. 23(7-8), 729–746 (2004)

    Article  Google Scholar 

  17. Wakamatsu, H., Hirai, S.: Static modeling of linear object deformable based on differential geometry. Int. J. Robotics Res. 23(3), 293–311 (2004)

    Article  Google Scholar 

  18. Wakamatsu, H., et al.: Planning of one-handed knotting/raveling manipulation of linear objects. In: Proc. IEEE Int. Conf. Robotics and Aut., Los Angeles (2004)

    Google Scholar 

  19. Wilfong, G.: Motion planning in the presence of movable obstacles. In: Proc. ACM Symp on Computational Geometry, Urbana-Champaign, IL (1988)

    Google Scholar 

  20. Wang, F., et al.: Knot-tying with visual and force feedback for VR laparoscopic training. In: Proc. 27th IEEE EMBS Annual Int. Conf., Shanghai, China (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saha, M., Isto, P., Latombe, JC. (2008). Motion Planning for Robotic Manipulation of Deformable Linear Objects. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics