Skip to main content

Fractal Classification of Typical Meteorological Days from Global Solar Irradiance: Application to Five Sites of Different Climates

  • Chapter
Modeling Solar Radiation at the Earth’s Surface

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguiar RJ, Collores-Pereira M, Conde JP (1988) Simple procedure for generating sequences of daily radiation values using a library of Markov transition Matrices. Solar Energy 40:269–279

    Article  Google Scholar 

  • Bartoli B, Coluzzi B, Cuomo V, Francesca M, Serio S (1981) Autocorrelation of daily global solar radiation. II Nuovo Cimento, 4C:113–122

    Article  Google Scholar 

  • Berry MV, Lewis ZV (1980). On the Weierstrass–Mandelbrot fractal function. Proc roy Soc Ser a 370:459–484

    Google Scholar 

  • Bouligand G (1928) Ensembles impropres et nombre dimensionnel. Bull Sci Math II-52: 320–344, 361–376

    Google Scholar 

  • Bouroubi MY (1998) Modélisation de l’irradiation solaire á l’échelle journaliére et horaire, pour l’Algérie. Master thesis, USTHB University

    Google Scholar 

  • Brinkworth BJ (1977) Autocorrelation and stochastic modelling of insolation sequences. Solar Energy 19:343–347

    Article  Google Scholar 

  • CPAU, 2007, http://www.cpau.com/programs/pv-partners/pvdata.html

    Google Scholar 

  • Dubuc B, Quiniou F, Roques-Carmes C, Tricot C, Zucker SW (1989) Evaluating the fractal dimension of profiles. Phys Rev A 39:1500–1512

    Article  MathSciNet  Google Scholar 

  • Guessoum AS, Boubekeur A, Maafi A (1998) Global irradiation model using radial basis function neural networks. In Proceedings of World Renewable Energy Congress V (WREC’98), Florence (Italy), pp 169–178

    Google Scholar 

  • Hardy GH (1916) Weierstrass’s nondifferentiable function. Trans amer Math Soc 17:322–323

    Article  MathSciNet  Google Scholar 

  • Harrouni S, Guessoum A (2003) Fractal Classification of solar irradiances into typical days using a cumulative distribution function. ICREPQ’03, Vigo (Spain)

    Google Scholar 

  • Harrouni S, Guessoum A (2006) New method for estimating the time series fractal dimension: Application to solar irradiances signals. In: Solar Energy: New research Book. Nova Science Publishers, New York, pp 277–307

    Google Scholar 

  • Harrouni S, Guessoum A, Maafi A (2002) Optimisation de la mesure de la dimension fractale des signaux: Application aux éclairements solaires. SNAS’02, Université d’Annaba

    Google Scholar 

  • Harrouni S, Guessoum A, Maafi A (2005) Classification of daily solar irradiation by fractional analysis of 10–min–means of solar irradiance. Theoretical and Applied Climatology 80:27–36

    Article  Google Scholar 

  • Harrouni S, Maafi A (2002) Classification des éclairements solaires á l’aide de l’analyse fractale. Revue Internationale des énergies renouvelables (CDER) 5:107–122

    Google Scholar 

  • Huang Q, Lorch JR, Dubes RC (1994) Can the fractal dimension of images be measured?. Pattern Recognition 27:339–349

    Article  Google Scholar 

  • Kolhe M, Agbossou K, Hamelin J, Bose TK (2003) Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen. Renewable Energy 28:727–742

    Article  Google Scholar 

  • Lestienne R, Bois Ph, Obled Ch (1979) Analyse temporelle et cartographie de la matrice stochastique pour le modéle Markovien dans le midi de la France. La Météorologie 17:83–122

    Google Scholar 

  • Liebovitch LS, Toth A (1989) Fast algorithm to determine fractal dimension by box counting. Phys Lett A 14:386–390

    Article  MathSciNet  Google Scholar 

  • Liu BYH, Jordan RC (1963) The long-term average performance of flat-plate solar-energy collectors: With design data for the US its outlying possessions and Canada. Solar Energy 7:53–74

    Article  Google Scholar 

  • Louche A, Notton G, Poggi P, Simonot G (1991) Classification of direct irradiation days in view of energetic applications. Solar Energy 46:255–259

    Article  Google Scholar 

  • Lundahl T, Ohley WJ, Kay SM, Siffert R (1986) Fractional Brownian motion: A maximum likelihood estimator and its application to image texture. IEEE Trans Med Imaging MI-5:152–160

    Article  Google Scholar 

  • Maafi A (1991) Mise en évidence d’aspects physiques du modéle Markovien du premier ordre á deux états en météorologie solaire: Application á la conversion photovoltaïque. Doctorat thesis, USTHB University

    Google Scholar 

  • Maafi A (1998) Markov-Models in discrete time for solar radiation. In Proceedings of Multiconference on Computational Engineering in Systems Applications (IMACS–IEEE), Nabeul-Hammamet (Tunisia) pp 319–322

    Google Scholar 

  • Maafi A, Harrouni S (2000) Measuring the fractal dimension of solar irradiance in view of PV systems performance analysis. Proc 6th W REC, Brighton (UK), pp 2032–2035

    Google Scholar 

  • Maafi A, Harrouni S (2003) Preliminary results of fractal classification of daily solar irradiance. Solar Energy 75:53–61

    Article  Google Scholar 

  • Mandelbrot B (1967) How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, New Series 156:636–638

    Google Scholar 

  • Mandelbrot BB (1982/1983) The fractal geometry of nature, Freeman, New York

    Google Scholar 

  • Mandelbrot BB, Wallis JR (1969) Computer experiments with fractional Brownian motion. Water Resources Res 5:228–267

    Google Scholar 

  • Maragos P, Sun FK (1993) Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Transaction on Signal Processing 41:108–121

    Google Scholar 

  • MIDC, 2007, http://www.nrel.gov/midc/

    Google Scholar 

  • Minkowski H (1901) Uber die Bgriffe Lange, Oberflache und Volumen, Jahresber, Deutch. Mathematikerverein 9:115–121

    Google Scholar 

  • Muselli M, Poggi P, Notton G, Louche A (2000) Classification of typical meteorological days from global irradiation records and comparison between two Mediterranean coastal sites in Corsica Island. Energy Conversion and Management 41:1043–1063

    Article  Google Scholar 

  • Richardson LF (1961) The problem of contiguity: an appendix of statistics of deadly quarrels. Genmal Systems Yearbook 6:139–187

    Google Scholar 

  • Sayigh AAM (1977) Solar energy engineering chap 4. Academic Press, New York

    Google Scholar 

  • Sfetsos A, Coonick AH (2000) Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy 68:169–178

    Article  Google Scholar 

  • Tricot C, Quiniou JF, Wehbi D, Roques-Carmes C, Dubuc B (1988) Evaluation de la dimension fractale d’un graphe. Rev Phys 23:111–124

    Google Scholar 

  • Voss RF (1988) Fractals in nature: From characterization to simulation. In The science of fractal Images, HO Peitgen and D Saupe. Springer-Verlag, New York

    Google Scholar 

  • Zeng X, Koehl L, Vasseur C (2001) Design and implementation of an estimator of fractal dimension using fuzzy techniques. Pattern Recognition 34:151–169

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harrouni, S. (2008). Fractal Classification of Typical Meteorological Days from Global Solar Irradiance: Application to Five Sites of Different Climates. In: Badescu, V. (eds) Modeling Solar Radiation at the Earth’s Surface. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77455-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77455-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77454-9

  • Online ISBN: 978-3-540-77455-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics