Skip to main content

Fire and fire ecology: Concepts and principles

  • Chapter
Tropical Fire Ecology

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Fire has been central to terrestrial life ever since early anaerobic microorganisms poisoned the atmosphere with oxygen and multicellular plant life moved onto land. The combination of fuels, oxygen, and heat gave birth to fire on Earth. Fire is not just another evolutionary challenge that life needed to overcome, it is, in fact, a core ecological process across much of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee, J.K. (1993) Fire Ecology of Pacific Northwest Forests. Island Press, Washington, D.C.

    Google Scholar 

  • Agee, J.K., B. Bahro, M.A. Finney, P.N. Omi, D.B. Sapsis, C.N. Skinner, J.W. van Wagtendonk, and C.W. Weatherspoon (2000) The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management, 127, 55–66.

    Article  Google Scholar 

  • Albini, F.A. (1976) Computer Based Models of Wildland Fire Behavior: A User’s Manual. U.S. Department of Agriculture Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Albini, F.A. (1983) Transport of fire brands by line thermals. Combustion Science and Technology, 32, 277–278.

    Article  Google Scholar 

  • Albini, F.A. and E.D. Reinhardt (1997) Improved calibration of a large fuel burnout model. International Journal of Wildland Fires, 7, 21–28.

    Article  Google Scholar 

  • Albini, F.A., J.K. Brown, E.D. Reinhardt, and R.D. Ottmar (1995) Calibration of a large fuel burnout model. International Journal of Wildland Fire, 5, 173–192.

    Article  Google Scholar 

  • Alencar, A., D. Nepstad and M. Vera Diaz (2006) Forest understory fire in the Brazilian Amazon in ENSO and no-ENSO years: Area burned and committed carbon emissions. Earth Interactions, 10, article 6.

    Google Scholar 

  • Alexander, M.E. (1982) Calculating and interpreting forest fire intensities. Canadian Journal of Botany, 60(4), 349–357.

    Google Scholar 

  • Alvarado-Celestino, E.A., J.E. Morfin-Ríos, E.J. Jardel-Peláez, R.E. Vihnanek, D.K. Wright, J.M. Michel-Fuentes, CS. Wright, R.D. Ottmar, D.V. Sandberg, and A. Nájera-Díaz (2008) Photo Series for Quantifying Forest Fuels in Mexico: Montane Subtropical Forests of the Sierra Madre del Sur, and Temperate Forests and Montane Shrub/and of the Northern Sierra Madre Oriental. Pacific Wildland Fire Sciences Laboratory, Special Publication No. 1, Seattle, WA.

    Google Scholar 

  • Anderson, H.E. (1969) Heat Transfer and Fire Spread, Research Paper INT-69. USDA Forest Service Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Anderson, H.E. (1982) Aids to Determining Fuel Models for Estimating Fire Behavior, General Technical Report INT-122. USDA Forest Service Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Andrews, P.L. and C.D. Bevins (2008) BEHAVE-Plus v. 4.0 on line documentation, February 17, 2008. Available at http://www.firemodels.org/content/viewlI2/26/, last accessed September 8, 2008.

    Google Scholar 

  • Armstrong, J. and R.G. Vines (1973) Burning properties of some Canadian forest fuels. Canadian Forest Service Bimonthly Research Notes, 29, 31–32.

    Google Scholar 

  • Bertschi, I., R.J. Yokleson, D.E Ward, R.E. Babbitt, R.A. Susott, J.G. Goode, and W.M. Hao (2003) Trace gas and particle emissions from fires in large diameter and below ground biomass fuels. Journal of Geophysical Research, 108(D13), 8472, doi: 10.1029/20o2JD002100.

    Article  CAS  Google Scholar 

  • Bond, W.J. and B.W. Van Wilgen (1996) Fire and Plants. Chapman & Hall, London.

    Google Scholar 

  • Bond, W.J. and J.E. Keeley (2005) Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20, 387–394.

    Article  PubMed  Google Scholar 

  • Bradstock, R.A., J.E. Williams, and A.M. Gill (2002) Flammable Australia: The Fire Regimes and Biodiversity of a Continent. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Broido, A. and M. Nelson (1964) Ash content: Its effect on combustion of corn plants. Science, 146, 652–653.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.K. (1971) A planar intersect method for sampling fuel volume and surface area. Forest Science, 17, 96–102.

    Google Scholar 

  • Brown, J.K. (1974) Handbook for Inventorying Downed Woody Material, General Technical Report INT-16. USDA Forest Service Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Brown, J.K. (2000) Introduction and fire regimes. In J.K. Brown and J.K. Smith (Eds.), Wildland Fire in Ecosystems: Effects of Fire on Flora, General Technical Report RMRS-GTR-42, Vol. 2. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Brown, J.K. and T.E. See (1981) Downed Dead Woody Fuel and Biomass in the Northern Rocky Mountains, General Technical Report INT-117. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Brown, J.K. and J.K. Smith (2000) Wildland Fire in Ecosystems: Eects of Fire on Flora, General Technical Report RMRS-GTR-42, Vol. 2. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Campbell, G.S., J.D. Jungbauer, Jr., K.L. Bristow, and R.D. Hungerford (1995) Soil temperature beneath a surface fire. Soil Science, 159(6), 363–374.

    Article  CAS  Google Scholar 

  • Catchpole, E.A., N.J. de Mestre, and A.M. Gill (1982a) Intensity of fire at its perimeter. Australian Journal of Forest Research, 12, 47–54.

    Google Scholar 

  • Catchpole, E.A., M.E. Alexander, and A.M. Gill (1982b) Elliptical fire perimeter and area intensity distributions. Canadian Journal of Forest Research, 22, 968–972.

    Article  Google Scholar 

  • Chafer, C.J., M. Noonan, and E. Macnaught (2004) The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. International Journal of Wildland Fire, 13, 227–240.

    Article  Google Scholar 

  • Cheney, P. and A. Sullivan (1997) Grassfires: Fuel Weather and Fire Behaviour. Commonwealth Scientific and Industrial Research Organisation, Collingwood, Victoria.

    Google Scholar 

  • Christian, T.J., B. Kleiss, R.J. Yokelson, R. Holzinger, P.J. Crutzen, W.M. Hao, B.H. Saharjo, and D.E. Ward (2003) Comprehensive laboratory measurements of biomass-burning emissions, 1: Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research, 108, 4719.

    Article  CAS  Google Scholar 

  • Cochrane, M.A. (2003) Fire science for rainforests. Nature, 421, 913–919.

    Article  CAS  PubMed  Google Scholar 

  • Cochrane, M.A. (Ed.) (this book, a) Fire, landuse, landcover dynamics and climate change in the Brazilian Amazon. Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Cochrane, M.A. (Ed.) (this book, b) Fire in the tropics. In M.A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Cochrane, M.A. and M.D. Schulze (1998) Forest fires in the Brazilian Amazon. Conservation Biology, 12, 948–950.

    Google Scholar 

  • Cochrane, M.A. and M.D. Schulze (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31, 2–16.

    Google Scholar 

  • Cochrane, M.A., A. Alencar, M.D. Schulze, C. Souza, Jr., D. Nepstad, P. Lefebvre, and E. Davidson (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832–1835.

    Article  CAS  PubMed  Google Scholar 

  • Conard, S.G., A.I. Sukhinin, B.J. Stocks, D.R. Cahoon, E.P. Davidenko, and G.A. Ivanova (2002) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Climatic Change, 55, 197–211.

    Article  CAS  Google Scholar 

  • Costa, F.d.S. and D.V. Sand berg (2004) Mathematical model of a smoldering log. Combustion and Flame, 139, 227–238.

    Article  CAS  Google Scholar 

  • DeBano, L.F., D.G. Neary, and P.F. Ffolliott (1998) Fire’s Effect on Ecosystems. John Wiley & Sons, New York.

    Google Scholar 

  • Feller, M.C. (1998) The influence of fire severity, not fire intensity, on understory vegetation biomass in British Columbia. Proceedings of 13th Conference on Fire and Forest Meteorology, October 27–31, 1996, Lome, Australia. International Association of Wildland Fire, Moran, WY.

    Google Scholar 

  • Finney, M.A. (1998) FARSITE: Fire Area Simulator—Model Development and Evaluation, Research Paper RMRS-RP-4. USDA Forest Service Rocky Mountain Research Station, Fort Collins, CO.

    Google Scholar 

  • Finney, M.A. (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. Forest Science, 47, 219–228.

    Google Scholar 

  • Frandsen, W.H. (1991a) Heat evolved from smoldering peat. International Journal of Wildland Fire, 1, 197–204.

    Article  Google Scholar 

  • Frandsen, W.H. (1991b) Burning rate of smoldering peat. Northwest Science, 65, 166–172.

    Google Scholar 

  • Frandsen, W.H. and K.C. Ryan (1986) Soil moisture reduces soil temperatures under a burning fuel pile. Canadian Journal of Forest Research, 16, 244–248.

    Article  Google Scholar 

  • Frost, C.C. (1998) Presettlement fire frequency regimes of the United States: A first approximation. In T.L. Pruden and L.A. Brennan (Eds.), Fire in Ecosystem Management: Shifting the Paradigm from Suppression to Prescription—Tall Timbers Fire Ecology Conference Proceedings, No. 20. Tall Timbers Research Station, Tallahasee, FL.

    Google Scholar 

  • Furyaev, V.V. (1996) Pyrological regimes and dynamics of the southern taiga forests in Siberia. In J.G. Goldammer and V.V. Furyaev (Eds.), Fire in Ecosystems of Boreal Eurasia. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Gill, A.M. (1975) Fire and the Australian flora: A review. Australian Forestry, 38, 4–25.

    Google Scholar 

  • Gill, A.M. (1981) Adaptive responses of Australian vascular plant species to fires. In A.M. Gill, R.H. Groves, and I.R. Noble (Eds.), Fire and the Australian Biota. Australian Academy of Science, Canberra.

    Google Scholar 

  • Gill, A.M. (1998) An hierarchy of fire effects: Impact of fire regimes on landscapes. Third International Conference on Forest Fire Research/14th Conference on Fire and Forest Meteorology, Luso, Portugal.

    Google Scholar 

  • Gill, A.M., R.A. Bradstock, and J.E. Williams (2002) Fire regimes and biodiversity: Legacy and vision. In R.A. Bradstock, J.E. Williams, and A.M. Gill (Eds.), Flammable Australia: The Fire Regimes and Biodiversity of a Continent. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Guild, L.S., J.B. Kauffman, L.J. Ellingson, D.L. Cummings, E.A. Castro, R.E. Babbitt, and D.E. Ward (1998) Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondônia, Brazil during SCAR-B. Journal of Geophysical Research, 103, 32091–32100.

    Article  Google Scholar 

  • Hann, W.J. (2004) Mapping fire regime condition class: A method for watershed and project scale analysis. In R.T. Engstrom, K.E.M. Galley, and W.J. De Groot (Eds.), 22nd Tall Timbers Fire Ecology Conference: Fire in Temperate, Boreal, and Montane Ecosystems. Tall Timbers Research Station, Tallahasee, FL.

    Google Scholar 

  • Hardy, C.C, J.P. Menakis, D.G. Long, J.K. Brown, and D.L. Bunnell (1998) Mapping historic fire regimes for the western United States: Integrating remote sensing and biophysical data. In J.D. Greer (Ed.), Natural Resource Management Using Remote Sensing and GIS: Seventh Forest Service Remote Sensing Applications Conference, Nassau Bay, Texas. Society of American Foresters, Bethesda, MD.

    Google Scholar 

  • Harmathy, T.Z. (1972) A new look at compartment fires, Part I. Fire Technology, 8(3), 196–217.

    Article  CAS  Google Scholar 

  • Harmathy, T.Z. (1976) Design of buildings for safety, Part I. Fire Technology, 12, 98–108.

    Google Scholar 

  • Hartford, R.A. and W.H. Frandsen (1992) When it’s hot, it’s hot—or maybe it’s not! International Journal of Wildland Fire, 2(3), 139–144.

    Article  Google Scholar 

  • Heinselman, M.L. (1978) Fire in wilderness ecosystems. In J.C. Hendee, G.H. Stankey, and R.C. Lucas (Eds.), Wilderness Management, Miscellaneous Publication No. 1365. USDA Forest Service, Washington, D.C.

    Google Scholar 

  • Heinselman, M.L. (1981) Fire intensity and frequency as factors in the distribution and structure of Northern ecosystems. In H.A. Mooney, T.M. Bonnicksen, N.L. Christensen, J.E. Lotan, and R.A. Reiners (Eds.), Fire Regimes and Ecosystem Properties: Proceedings of the Conference, December 11–15, 1978, Honolulu, HI, General Technical Report WO-26. USDA Forest Service, Washington D.C.

    Google Scholar 

  • Heinselman, M.L. (1983) Fire and succession in the conifer forests of northern North America. In D.C. West, H.H. Shugart, and D.B. Botkin (Eds.), Forest Succession, Concepts and Application. Springer-Verlag, New York.

    Google Scholar 

  • Heskestad, G. (1997) Flame heights of fuel arrays with combustion in depth. Fire Safety Science: Proceedings of the Fifth International Symposium. International Association for Fire Safety Science, London.

    Google Scholar 

  • Hoffmann, A.A., J. Parry, C. Cuambe, D. Kwesha, and W. Zhakata (this book) Climate change and wildland fires in Mozambique. In M.A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Hungerford, R.E., W.H. Frandsen, and K.C. Ryan (1995) Ignition and burning characteristics of organic soils. In S.I. Cerulean and R.T. Engstrom (Eds.), Fire in Wetlands: A Management Perspective—Proceedings of the Tall Timbers Fire Ecology Conference, No. 19. Tall Timbers Research Station, Tallahasee, FL.

    Google Scholar 

  • Johnson, E.A. and K. Miyanishi (2001) Strengthening fire ecology’s roots. In E.A. Johnson and K. Miyanishi (Eds.), Forest Fires Behavior and Ecological Effects. Academic Press, San Diego, CA.

    Google Scholar 

  • Kauffman, J.B. and C. Uhl (1990). Interactions of anthropogenic activities, fire, and logging in rain forests in the Amazon basin. In J.G. Goldammer (Ed.), Fire in the Tropical Biota. Springer-Verlag, Berlin.

    Google Scholar 

  • Kauffman, J.B., C. Uhl, and D.L. Cummings (1988) Fire in the Venezuelan Amazon, 1: Fuel biomass and fire chemistry in the evergreen rainforest of Venezuela. Oikos, 53, 167–175.

    Article  Google Scholar 

  • Keane, R.E., C.C. Hardy, K.C. Ryan, and M.A. Finney (1997) Simulating effects of fire on gaseous emissions and atmospheric carbon fluxes from coniferous forest landscapes. World Resource Review, 9(2), 177–205.

    Google Scholar 

  • Kilgore, B.M. (1981) Fire in ecosystem distribution and structure: Western forests and scrublands. In H.A. Mooney, T.M. Bonnicksen, N.L. Christensen, J.E. Lotan, and R.A. Reiners (Eds.), Fire Regimes and Ecosystem Properties: Proceedings of the conference, December 11–15, 1978, Honolulu, HI, General Technical Report WO-26. USD A Forest Service, Washington D.C.

    Google Scholar 

  • Kodandapani, N., M.A. Cochrane, and R. Sukumar (this book) Forest fire regimes and their ecological effects in seasonally dry tropical ecosystems in the Western Ghats, India. In M.A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Linn, R., J. Winterkamp, J.J. Colman, C. Edminster, and J.D. Bailey (2005) Modeling interactions between fire and atmosphere in discrete element fuel beds. International Journal of Wildland Fire, 14, 37–48.

    Article  Google Scholar 

  • Lutes, D.C, R.E. Keane, and J.F. Caratti (in press) A surface fuels classification for estimating fire effects. International Journal of Wildland Fire.

    Google Scholar 

  • Martin, R.E. (1963) Thermal properties of bark. Forest Products Journal, 13, 419–426.

    Google Scholar 

  • McCaw, W.L., R.H. Smith, and J.E. Neal (1997) Prescribed burning of thinning slash in regrowth stands of karri (Eucalyptus diversicolor), 1: Fire characteristics, fuel consumption and tree damage. International Journal of Wildland Fire, 7, 29–40.

    Article  Google Scholar 

  • Messina, J.P. and M.A. Cochrane (2007) The forests are bleeding: How land use change is creating a new fire regime in the Ecuadorian Amazon. Journal of Latin American Geography, 6, 85–100.

    Article  Google Scholar 

  • Michaletz, S.T. and E.A. Johnson (2007) How forest fires kill trees: A review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 22, 500–515.

    Article  Google Scholar 

  • Morgan, P. and L.F. Neuenschwander (1988) Shrub response to high and low severity burns following clearcutting in Northern Idaho. Western Journal of Applied Forestry, 3(1), 5–9.

    Google Scholar 

  • Morgan, P., S.C Bunting, A.E. Black, T. Merrill, and S. Barrett (1998) Past and present fire regimes in the Interior Columbia River Basin. In K. Close and R.A. Bartlette (Eds.), Fire Management under Fire ( Adapting to Change): Proceedings of the 1994 Interior West Fire Council Meeting and Program, November 1–4, 1994, Coeur d’Alene, Idaho. International Association of Wildland Fire, Fairfield, WA.

    Google Scholar 

  • Morgan, P., C.C. Hardy, T.W. Swetnam, M.G. Rollins, and D.G. Long (2001) Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire, 10, 329–342.

    Article  Google Scholar 

  • Mutch, R.W. and C.W. Philpot (1970) Relation of silica content to flammability in grasses. Forest Science, 16, 64–65.

    CAS  Google Scholar 

  • Neary, D.G., C.C. Klopatek, L.F. DeBano, and P.F. Ffolliott (1999) Fire effects on below-ground sustainability: A review and synthesis. Forest Ecology and Management, 122, 51–71.

    Article  Google Scholar 

  • Nelson, Jr., R.M. (2001) Water relations of forest fuels. In E.A. Johnson and K. Miyanishi (Eds.), Forest Fires Behavior and Ecological Effects Academic Press, San Diego, CA.

    Google Scholar 

  • Noble, I.R and R.O. Slatyer (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio, 43(1/2), 5–21.

    Article  Google Scholar 

  • Noble, I.R and R.O. Slatyer (1981) Concepts and models of succession in vascular plant communities subject to recurrent fires. In A.M. Gill, R.H. Groves, and I.R. Noble (Eds.), Fire and the Australian Biota. Australian Academy of Science, Canberra.

    Google Scholar 

  • Ottmar, R.D., R.E. Vihnanek, H.S. Miranda, M.N. Sato, and S.M.A. Andrade (2001) Stereo Photo Series for Quantifying Cerrado Fuels in Central Brazil, Vol. 1, General Technical Report PNW-GTR-519. USDA Forest Service, Portland, OR.

    Google Scholar 

  • Ottmar, R.D., D.C. Sandberg, C.L. Riccardi, and S.J. Prichard (2007) An overview of the Fuel Characteristic Classification System: Quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research, 37, 2383–2393.

    Article  Google Scholar 

  • Page, S.E., F. Siegert, J.O. Rieley, H.V. Boehm, A. Jaya, and S. Limin (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Page, S., A. Hoscilo, A. Langer, K. Tansey, F. Siegert, S. Limin, and J. Rieley (this book) Tropical peatland fires in Southeast Asia. In M.A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Peterson, D.L. and K.C. Ryan (1986) Modeling post-fire conifer mortality for long-range planning. Environmental Management, 10, 797–808.

    Article  Google Scholar 

  • Philpot, C.W. (1970) The influence of mineral content on the pyrolysis of plant materials. Forest Science, 16, 461–471.

    CAS  Google Scholar 

  • Pinard, M.A. and J. Huffman ( 1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. Journal of Tropical Ecology, 13, 727–740.

    Article  Google Scholar 

  • Pompe, A. and Vines R.G. (1966) The influence of moisture in the combustion of leaves. Australian Forestry, 30, 231–241.

    Google Scholar 

  • Pyne, S.J., P.L. Andrews, and R.D. Laven (1996) Introduction to Wild/and Fire, Second Edition. John Wiley & Sons, New York.

    Google Scholar 

  • Reardon, J., R. Hungerford, and K. Ryan (2007) Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands. International Journal of Wild land Fire, 16, 107–118.

    Article  Google Scholar 

  • Rego, F. and E. Rigolot (1990) Heat transfer through bark: A simple predictive model. In J.G. Goldammer and M.J. Jenkins (Eds.), Proceedings of the Third International Symposium on Fire Ecology: Fire Ecosystem Dynamics, Freiburg, Germany.

    Google Scholar 

  • Reinhardt, E.D., R.E. Keane, and J.K. Brown (2001) Modeling fire effects. International Journal of Wildland Fires, 10, 373–380.

    Article  Google Scholar 

  • Rothermel, R.C. (1972) A Mathematical Model for Predicting Fire Spread in Wildland Fuels, Research Paper INT-115. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Rothermel, R.C. (1983) How to Predict the Spread and Intensity of Forest and Range Fires, General Technical Report INT-143. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Rothermel, R.C. (1991) Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains, Research Paper INT-438. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Rothermel, R.C. and J.E. Deeming (1980) Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT-93. USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Rowe, J.S. (1983) Concepts of fire effects on plant individuals and species. In R.W. Wein and D.A. MacLean (Eds.), The Role of Fire in Northern Circumpolar Ecosystems, Scope 18. John Wiley & Sons, New York.

    Google Scholar 

  • Ryan, K.C. (1991) Vegetation and wildland fire: Implications of global climate change. Environment International, 17, 169–178.

    Article  Google Scholar 

  • Ryan, K.C. (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica, 36(1), 13–39.

    Google Scholar 

  • Ryan, K.C. and W.H. Frandsen (1991) Basal injury from smoldering fires in mature Pinus ponderosa laws. International Journal of Wildland Fire, 1, 107–118.

    Article  Google Scholar 

  • Saito, K. (2001) Flames. In E.A. Johnson and K. Miyanishi (Eds.), Forest Fires Behavior and Ecological Effects. Academic Press, San Diego, CA.

    Google Scholar 

  • Sandberg, D.V., C.L. Riccardi, and M.D. Schaaf (2007) Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classification System. Canadian Journal of Forest Research, 37, 2456–2463.

    Article  Google Scholar 

  • Schroeder, M.J. and C.C. Buck (1970) Fire Weather: A Guide for Application of Meteorological Information to Forest Fire Control Operations, USDA Forest Service Agriculture Handbook 360, USDA, Washington, D.C.

    Google Scholar 

  • Scott, J.H. and R.E. Burgan (2005) Standard Fire Behavior Fuel Mode/s: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model, General Technical Report RMRS-GTR-153. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.

    Google Scholar 

  • Scott, J.H. and E.D. Reinhardt (2001) Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior, Research Paper RMRS-RP-29. USDA Forest Service, Ft. Collins, CO.

    Google Scholar 

  • Shlisky, A., A.A.C. Alencar, M.M. Nolasco, and L.M. Curran (this book) Overview: Global fire regime conditions, threats, and opportunities for fire management in the tropics. In M.A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer/Praxis, Chichester, U.K.

    Google Scholar 

  • Siegert, F., G. Ruecker, A. Hinrichs, and A.A. Hoffman (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437–440.

    Article  CAS  PubMed  Google Scholar 

  • Spalt, K.F and W.E. Reifsnyder (1962) Bark Characteristics and Fire Resistance: A Literature Survey, Occasional Paper 193. USDA Forest Service, Southern Forest Experiment Station, New Orleans.

    Google Scholar 

  • Stott, P. (2000) Combustion in tropical biomass fires: A critical review. Progress in Physical Geography, 24, 355–377.

    Google Scholar 

  • Sugihara, N.G., J.W. Van Wagtendonk, K.E. Shaffer, J. Fites-Kaufman, and A.E. Thode (2006) Fire in California Ecosystems. University of California Press, Berkeley, CA.

    Google Scholar 

  • Sullivan, A.L., P.F. Ellis, and I.K. Knight (2003). A review of radiant heat flux models used in bushfire applications. International Journal of Wildland Fire, 12, 101–110.

    Article  Google Scholar 

  • Turner, M.G. and W.H. Romme (1994) Landscape dynamics in crown fire ecosystems. Landscape Ecology, 9(1), 59–77.

    Article  Google Scholar 

  • Turner, M.G., W.W. Hargrove, R.H. Gardner, and W.H. Romme (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science, 5, 731–742.

    Article  Google Scholar 

  • Turner, M.G., W.H. Romme, R.H. Gardner, and W.W. Hargrove (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological Monographs, 67(4), 411–433.

    Article  Google Scholar 

  • Turner, M.G., W.H. Romme, and R.H. Gardner (1999) Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. International Journal of Wildland Fire, 9(1), 21–36.

    Article  Google Scholar 

  • Uhl, C. and J.B. Kauffman (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437–449.

    Article  Google Scholar 

  • UNEP (2002) Cochrane, M.A. Spreading like Wildfire—Tropical Forest Fires in Latin America and the Caribbean: Prevention, Assessment and Early Warning. U.N. Environment Program, Panama, 96 pp

    Google Scholar 

  • Urbanski, S.P., W.M. Hao, and S. Baker (2009) Chemical composition of wildland fire emissions. In A. Bytnerowicz, M. Arbaugh, A. Riebau, and C. Andersen (Eds.), Wildland Fires and Air Pollution, Developments in Environmental Science, Vol. 8. Elsevier, Amsterdam.

    Google Scholar 

  • Van Wagner, C.E. (1973) Height of crown scorch in forest fires. Canadian Journal of Forest Research, 3, 373–378.

    Article  Google Scholar 

  • Van Wagner, C.E. (1977) Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 7, 23–34.

    Article  Google Scholar 

  • Van Wagner, C.E. (1978) Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research, 8, 220–227.

    Article  Google Scholar 

  • Van Wagner, C.E. (1983) Fire behavior in northern conifer forests and shrublands. In R.W. Wein and D.A. MacLean (Eds.), The Role of Fire in Northern Circumpolar Ecosystems, Scope 18. John Wiley & Sons, New York.

    Google Scholar 

  • Viney, N.R. (1991) A review of fine fuel moisture modeling. International Journal of Wildland Fire, 1, 215–234.

    Article  Google Scholar 

  • Ward, D. (2001) Combustion chemistry and smoke. In E.A. Johnson and K. Miyanishi (Eds.), Forest Fires Behavior and Ecological Effects. Academic Press, San Diego, CA.

    Google Scholar 

  • Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babitt, R.W. Shea, J.B. Kaufmann, and CO. Justice (1996) Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. Journal of Geophysical Research, 101(D19), 23569–23576.

    Article  CAS  Google Scholar 

  • Whelan, R.J. (1995) The Ecology of Fire. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Williams, F.A. (1982) Urban and wildland fire phenomenology. Progress in Energy Combustion Science, 8, 317–354

    Article  CAS  Google Scholar 

  • Wilson, R.A. (1985) Observations of extinction and marginal burning states in free burning porous fuel beds. Combustion Science and Technology, 44, 179–193.

    Article  Google Scholar 

  • Wright, C.S., R.O. Ottmar, E. Vihnanek, and D.R. Weise (2002) Stereo Photo Series for Quantifying Natural Fuels: Grass/and, Shrub/and, Wood/and, and Forest Types in Hawaii, General Technical Report PNW-GTR-545. USDA Forest Service, Portland, OR.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Cochrane, M.A., Ryan, K.C. (2009). Fire and fire ecology: Concepts and principles. In: Tropical Fire Ecology. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77381-8_2

Download citation

Publish with us

Policies and ethics