Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 62))

Summary

The most primitive numerical method of solving the radiative transfer equation forms the basis of an algorithm to generate high quality numerical solutions. We apply convergence acceleration to the discrete ordinates balance equation derived from a diamond difference approximation. Wynn-epsilon and Romberg accelerations then rearrange low order solutions to produce a high order solution. Published semianalytical benchmarks from the C.E. Siewert portfolio establish the credibility of the new converged discrete ordinates method (CDOM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, NY, 1965.

    Google Scholar 

  2. G. A. Baker and P. Graves-Morris, Pade’ Approximants, Cambridge University Press, New York, 1996.

    MATH  Google Scholar 

  3. B. Ganapol, Mining the multigroup-discrete ordinates algorithm for high quality solutions, Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Avignon, France, September 12-15, 2005, American Nuclear Society, LaGrange Park, IL, 2005.

    Google Scholar 

  4. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Romberg Integration, Numerical Recipes in FORTRAN: The Art of Scientific.

    Google Scholar 

  5. C. Devaux, P. Grandjean, Y. Ishiguro and C. E. Siewert, On multi-Region Prob- lems in Radiative Transfer, Astrophys. Space Sci. 62 (1979) 223-233.

    Google Scholar 

  6. C. E. Siewert, J. R. Maiorino and M. N. Ozisik, The use of the FN method for ra- diative transfer problems with reflective boundary conditions, JQSRT 25 (1990) 565-573.

    Google Scholar 

  7. M. Benassi, R. M. Cotta and C. E. Siewert, The PN method for radiative transfer problems with reflective boundary conditions, JQSRT, 30 (1983) 547-553.

    Google Scholar 

  8. R. C. Y. Chin, G. W. Hedstrom and C. E. Siewert, On the use of the FN method with splines for radiative transfer problems, JQSRT, 39 (1988) 206-217.

    Google Scholar 

  9. C. Devaux and C. E. Siewert, The FN method for radiative transfer problems without azimuthal symmetry, ZAMP 31 (1980) 592-604.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. D. M. Garcia and C. E. Siewert, Benchmark results in radiative transfer, TTSP 14 (1983)437-483.

    MathSciNet  Google Scholar 

  11. R. D. M. Garcia and C. E. Siewert, Radiative transfer in finite inhomogeneous plane-parallel atmospheres, JQSRT 27 (1982) 141-148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganapol, B.D., Furfaro, R. (2008). The Art of Analytical Benchmarking. In: Graziani, F. (eds) Computational Methods in Transport: Verification and Validation. Lecture Notes in Computational Science and Engineering, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77362-7_4

Download citation

Publish with us

Policies and ethics