Skip to main content

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 62))

Summary

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as arguably the best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer–Meshkov instability*.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Sornette, A. B. Davis, K. Ide, K. R. Vixie, V. Pisarenko, and J. R. Kamm. Algorithm for model validation: Theory and applications. Proc. Nat. Acad. Sci., 104:6562-6567, 2007.

    Google Scholar 

  2. P. J. Roache. Verification and Validation in Computational Science and Engi- neering. Hermosa Publishers, Albuquerque, 1998.

    Google Scholar 

  3. R. Costanza, R. d’Arge, R. deGroot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton, and M. vandenBelt. The value of the world’s ecosystem services and natural capital. Nature, 387:253-260, 1997.

    Google Scholar 

  4. S. Pimm. The value of everything. Nature, 387:231-232, 1997.

    Google Scholar 

  5. I. Babuska and J. T. Oden. Verification and validation in computational en- gineering and science: Basic concepts. Comput. Methods Appl. Mech. Eng., 193:4057-4066, 2004.

    MATH  MathSciNet  Google Scholar 

  6. D. E. Post and L. G. Votta. Computational science demands a new paradigm. Phys. Today, 58:35-41, 2005.

    Google Scholar 

  7. 7. AIAA. Guide for the verification and validation of computational fluid dynam- ics simulations. Technical Report AIAA G-077-1998, American Institute of Aeronautics and Astronautics, 1998.

    Google Scholar 

  8. S. Schlesinger. Terminology for model credibility. Simulation, 32(3):103-104, 1979.

    Google Scholar 

  9. R. G. Sargent. Verification and validation of simulation models. In D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan (eds. ), Proceedings of the 1998 Winter Simulation Conference, pp. 121-130. 1998.

    Google Scholar 

  10. R. G. Sargent. Some approaches and paradigms for verifying and validating simulation models. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer (eds. ), Proceedings of the 2001 Winter Simulation Conference, pp. 106-114. 2001.

    Google Scholar 

  11. A. C. Calder, B. Fryxell, T. Plewa, R. Rosner, L. J. Dursi, V. G. Weirs, T. Dupont, H. F. Robey, J. O. Kane, B. A. Remington, R. P. Drake, G. Dimonte, M. Zingale, F. X. Timmes, K. Olson, P. Ricker, P. MacNeice, and H. M. Tufo. On validating an astrophysical simulation code. Astrophys. J. Suppl. Ser., 143:201-229, 2002.

    Google Scholar 

  12. G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys., 27:1-31, 1978.

    MATH  MathSciNet  Google Scholar 

  13. W. J. Rider. An adaptive Riemann solver using a two-shock approximation. Comput. Fluids, 28:741-777, 1999.

    MATH  Google Scholar 

  14. L. I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press, New York, NY, 1959.

    MATH  Google Scholar 

  15. P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54:115-173, 1984.

    MATH  MathSciNet  Google Scholar 

  16. P. A. Gnoffo, R. D. Braun, K. J. Weilmuenster, R. A. Mitcheltree, W. C. Engelund, and R. W. Powell. Prediction and validation of Mars Pathfinder hypersonic aerodynamic data base. In Proceedings of 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, June 15-18, 1998, Albuquerque, NM, 1998.

    Google Scholar 

  17. P. J. Roache. Fundamentals of Computational Fluid Dynamics. Hermosa Pub-lishers, Albuquerque, 1998.

    Google Scholar 

  18. P. J. Roache. Recent contributions to verification and validation methodol-ogy. In Proceedings of the Fifth World Congress on Computational Mechanics, Vienna, Austria, 2002.

    Google Scholar 

  19. N. Oreskes, K. Shrader-Frechette, and K. Belitz. Verification, validation and confirmation of numerical models in the Earth sciences. Science, 263:641-646, 1994.

    Google Scholar 

  20. J. D. Sterman. The meaning of models. Science, 264:329-330, 1994.

    Google Scholar 

  21. E. J. Rykiel, Jr. The meaning of models. Science, 264:330-331, 1994.

    Google Scholar 

  22. N. Oreskes, K. Belitz, and K. Shrader-Frechette. The meaning of models -Response. Science, 264:331, 1994.

    Google Scholar 

  23. N. Oreskes. Evaluation (not validation) of quantitative models. Environmental Health Perspective Supplements, 106(Suppl. 6):1453-1460, 1998.

    Google Scholar 

  24. L. F. Konikow and J. D. Bredehoeft. Groundwater models cannot be validated. Adv. Water Res., 15:75-83, 1992.

    Google Scholar 

  25. G. J. Chaitin. Algorithmic Information Theory. Cambridge University Press, New York, NY, 1987.

    Google Scholar 

  26. M. Buchanan. Revealing order in the chaos. New Scientist, 2488, 2005.

    Google Scholar 

  27. N. Israeli and N. Goldenfeld. On computational irreducibility and the pre-dictability of complex physical systems. Phys. Rev. Lett., 92:74105-74108, 2004.

    Google Scholar 

  28. A. A. Borovkov. Mathematical Statistics. Taylor & Francis, Amsterdam, The Netherlands, 1998.

    MATH  Google Scholar 

  29. H. W. Coleman and F. Stern. Uncertainties and CFD code validation. J. Fluids Eng., 119:795-803, 1997.

    Google Scholar 

  30. R. G. Hills and T. G. Trucano. Statistical validation of engineering and scien- tific models: Background. Technical Report SAND99-1256, Sandia National Laboratory, 1999.

    Google Scholar 

  31. R. G. Hills and T. G. Trucano. Statistical validation of engineering and scientific models with application to CTH. Technical Report SAND2001-0312, Sandia National Laboratory, 2000.

    Google Scholar 

  32. R. G. Easterling. Measuring the predictive capability of computational models: Principles and methods, issues and illustrations. Technical Report SAND2001- 0243, Sandia National Laboratory, 2001.

    Google Scholar 

  33. W. L. Oberkampf and T. G. Trucano. Verification and validation in computa- tional fluid dynamics. Progr. Aerospace Sci., 38:209-272, 2002.

    Google Scholar 

  34. C. Gourieroux and A. Monfort. Testing non-nested hypotheses. In R. F. Engle and D. McFadden (eds. ), Handbook of Econometrics, Vol. IV, Chap. 44, pp. 2583-2637. Elsevier Science B. V., Amsterdam, The Netherlands, 1994.

    Google Scholar 

  35. T. G. Trucano, M. Pilch, and W. L. Oberkampf. On the role of code compar- isons in verification and validation. Technical Report SAND2003-2752, Sandia National Laboratory, 2003.

    Google Scholar 

  36. R. F. Cahalan, L. Oreopoulos, A. Marshak, K. F. Evans, A. B. Davis, R. Pincus, K. H. Yetzer, B. Mayer, R. Davies, T. P. Ackerman, H. W. Barker, E. E. Clothiaux, R. G. Ellingson, M. J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O’Hirok, P. T. Partain, S. M. Prigarin, A. N. Rublev, G. L. Stephens, F. Szczap, E. E. Takara, T. Varnai, G. Y. Wen, and T. B. Zhuravleva. The I3RC: Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Am. Meteor. Soc., 86(9):1275-1293, 2005.

    Google Scholar 

  37. B. Pinty, N. Gobron, J. L. Widlowski, S. A. W. Gerstl, M. M. Verstraete, M. Antunes, C. Bacour, F. Gascon, J. P. Gastellu, N. Goel, S. Jacquemoud, P. North, W. H. Qin, and R. Thompson. RAdiation Transfer Model Intercom- parison (RAMI) exercise. J. Geophys. Res., 106(D11):11937-11956, 2001.

    Google Scholar 

  38. B. Pinty, J. L. Widlowski, M. Taberner, N. Gobron, M. M. Verstraete, M. Disney, F. Gascon, J. P. Gastellu, L. Jiang, A. Kuusk, P. Lewis, X. Li, W. Ni-Meister, T. Nilson, P. North, W. Qin, L. Su, S. Tang, R. Thompson, W. Verhoef, H. Wang, J. Wang, G. Yan, and H. Zang. RAdiation Trans- fer Model Intercomparison (RAMI) exercise: Results from the second phase. J. Geophys. Res., 109(D6):D06210, doi:10. 1029/2003JD004252, 2004.

    Google Scholar 

  39. J. L. Widlowski, M. Taberner, B. Pinty, V. Bruniquel-Pinel, M. Disney, R. Fernandes, J. P. Gastellu-Etchegorry, N. Gobron, A. Kuusk, T. Lavergne, S. Leblanc, P. E. Lewis, E. Martin, M. Mottus, P. R. J. North, W. Qin, M. Robustelli, N. Rochdi, R. Ruiloba, C. Soler, R. Thompson, W. Verhoef, M. M. Verstraete, and D. Xie. Third RAdiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models. J. Geophys. Res., 112(D9):D09111, doi:10. 1029/2006JD007821, 2007.

    Google Scholar 

  40. T. G. Trucano, L. P. Swiler, T. Igusa, W. L. Oberkampf, and M. Pilch. Calibra- tion, validation, and sensitivity analysis: What’s what. Reliab. Eng. Syst. Saf., 91:1331-1357, 2006.

    Google Scholar 

  41. W. L. Oberkampf. What are validation experiments? Exp. Tech., 25:35-40, 2002.

    Google Scholar 

  42. T. G. Trucano, M. Pilch, and W. L. Oberkampf. General concepts for experimen- tal validation of ASCI code applications. Technical Report SAND2002-0341, Sandia National Laboratory, 2002.

    Google Scholar 

  43. A. Saltelli, K. Chan, and E. M. Scott (eds. ). Sensitivity Analysis. Wiley, Chich-ester, 2000.

    MATH  Google Scholar 

  44. A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice. Wiley, Chichester, UK, 2004.

    MATH  Google Scholar 

  45. E. Kalnay. Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, New York, NY, 2003.

    Google Scholar 

  46. D. F. Parrish and J. F. Derber. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev., 120:1747-1763, 1992.

    Google Scholar 

  47. F. Rabier, H. Jarvinen, E. Klinker, J. -F. Mahfouf, and A. Simmons. The ECMWF implementation of four-dimensional variational assimilation (4D- Var): I. Experimental results with simplified physics. Q. J. Roy. Meteorol. Soc., 126:1143-1170, 2000.

    Google Scholar 

  48. P. L. Houtekamer and H. L. Mitchell. Ensemble Kalman filtering. Q. J. Roy. Meteorol. Soc., 131:3269-3289, 2005.

    Google Scholar 

  49. I. Szunyogh, E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke. A local ensemble transform Kalman filter data assimilation system for the ncep global model. Tellus A: Dynamic Meteorology and Oceanography, 59:doi: 10. 1111/j. 1600-0870. 2007. 00274, 2007. In press.

    Google Scholar 

  50. J. S. Whitaker, T. M. Hamill, X. Wei, Y. Song, and Z. Toth. Ensemble data assimilation with the NCEP global forecast system. Mon. Weather Rev., 136 (2):463-482, 2007.

    Google Scholar 

  51. Z. Toth and E. Kalnay. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc., 74:2317-2330, 1993.

    Google Scholar 

  52. P. L. Houtekamer and J. Derome. Methods for ensemble prediction. Mon. Weather Rev., 123:2181-2196, 1995.

    Google Scholar 

  53. F. Molteni, R. Buizza, T. N. Palmer, and T. Petroliagis. The ECMWF ensemble prediction system: Methodology and validation. Q. J. Roy. Meteorol. Soc., 122:73-119, 1996.

    Google Scholar 

  54. D. W. Berning and A. R. Hefner, Jr. IGBT model validation. IEEE Ind. Appl. Mag., 4(6):23-34, 1998.

    Google Scholar 

  55. S. Kaplan and B. J. Garrick. On the quantitative definition of risk. Risk Anal., 1:11-27, 1981.

    Google Scholar 

  56. R. P. Rechard. Historical background on performance assessment for the Waste Isolation Pilot Plant. Reliab. Eng. Syst. Saf., 69:5-46, 2000.

    Google Scholar 

  57. R. L. Keeney and D. von Winterfeldt. Eliciting probabilities from experts in complex technical problems. IEEE Trans Eng. Manage., 38:191-201, 1991.

    Google Scholar 

  58. J. C. Helton. Treatment of uncertainty in performance assessments for complex systems. Risk Anal., 14:483-511, 1994.

    Google Scholar 

  59. J. C. Helton. Uncertainty and sensitivity analysis in performance assessment for the Waste Isolation Pilot Plant. Comp. Phys. Commun., 117:156-180, 1999.

    Google Scholar 

  60. J. C. Helton, D. R. Anderson, G. Basabilvazo, H. -N. Jow, and M. G. Marietta. Conceptual structure of the 1996 performance assessment for the Waste Isola- tion Pilot Plant. Reliab. Eng. Syst. Saf., 69:151-165, 2000.

    Google Scholar 

  61. F. Dyson. Infinite in All Directions. Penguin, London, UK, 1988.

    Google Scholar 

  62. L. Pal and M. Makai. Remarks on statistical aspects of safety analysis of complex systems. 2003.

    Google Scholar 

  63. J. von Neumann and O. Morgenstein. Theory of Games and Economic Behav- ior. Princeton University Press, Princeton, NJ, 1944.

    Google Scholar 

  64. T. E. Harris. The Theory of Branching Processes. Dover, New York, NY, 1988.

    Google Scholar 

  65. A. Wald. Statistical Decision Functions. Wiley, New York, NY, 1950.

    MATH  Google Scholar 

  66. S. Kotz and N. Johnson. Breakthroughs in Statistics (Foundations and Theory), Vol. 1. Springer, Berlin Heidelberg New York, Germany, 1993.

    Google Scholar 

  67. H. A. Simon. A behavioral model of rational choice. Q. J. Econ., 69(1):99-118, 1955.

    Google Scholar 

  68. H. A. Simon. Rational decision making in business organizations. Am. Econ. Rev., 69(4):493-513, 1979.

    Google Scholar 

  69. R. Zhang and S. Mahadevan. Bayesian methodology for reliability model ac- ceptance. Reliab. Eng. Syst. Saf., 80:95-103, 2003.

    Google Scholar 

  70. S. Mahadevan and R. Rebba. Validation of reliability computational models using Bayesian networks. Reliab. Eng. Syst. Saf., 87:223-232, 2005.

    Google Scholar 

  71. Board on Earth Sciences and Resources, Panel on Seismic Hazard Evaluation, Committee on Seismology, Commission on Geosciences, Environment, and Re- sources, National Research Council. Review of Recommendations for Proba- bilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. National Academy Press, Washington, DC, 1997.

    Google Scholar 

  72. T. N. Palmer, R. Gelaro, J. Barkmeijer, and R. Buizza. Singular vectors, metrics and adaptive observations. J. Atmos. Sci., 55:633-653, 1998.

    Google Scholar 

  73. J. -F. Muzy, E. Bacry, and A. Arnéodo. The multifractal formalism revisited with wavelets. Int. J. Bifurcat. Chaos, 4:245-302, 1994.

    MATH  Google Scholar 

  74. R. E. Bellman and L. A. Zadeh. Decision-making in a fuzzy environment. Man-age. Sci., 17:141-164, 1970.

    MathSciNet  Google Scholar 

  75. L. A. Zadeh. Knowledge representation in fuzzy logic. In R. R. Yager and L. A. Zadeh (eds. ), An Introduction to Fuzzy Logic Applications in Intelligent Systems, pp. 2-25. Kluwer Academic, Norwell, 1992.

    Google Scholar 

  76. W. L. Oberkampf and M. F. Barone. Measures of agreement between computa- tion and experiment: Validation metrics. Technical Report SAND2005-4302, Sandia National Laboratory, 2005.

    Google Scholar 

  77. M. Massimi. Pauli’s Exclusion Principle: The Origin and Validation of a Sci- entific Principle. University of Cambridge Press, Cambridge, UK, 2005.

    Google Scholar 

  78. A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777-780, 1935.

    MATH  Google Scholar 

  79. J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195-290, 1964.

    Google Scholar 

  80. A. Aspect, C. Imbert, and G. Roger. Absolute measurement of an atomic cascade rate using a two-photon coincidence technique. Application to the 4p2 1 S0 → 4s4p 1 P1 → 4s2 1 S0 cascade of calcium exited by a two photon absorp-tion. Opt. Commun., 34:46-52, 1980.

    Google Scholar 

  81. N. J. Rarity and J. P. Tapster. Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett., 64:2495-2498, 1990.

    Google Scholar 

  82. R. Webb, S. Washburn, C. Umbach, and R. Laibowitz. Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett., 54:2696- 2969, 1985.

    Google Scholar 

  83. B. Schwarzschild. Currents in normal-metal rings exhibit Aharonov-Bohm ef-fect. Phys. Today, 39:17-20, 1986.

    Google Scholar 

  84. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 296:198-201, 1995.

    Google Scholar 

  85. R. Gähler, A. G. Klein, and A. Zeilinger. Neutron optical test of nonlinear wave mechanics. Phys. Rev. A, 23:1611-1617, 1981.

    Google Scholar 

  86. S. Weinberg. Precision tests of quantum mechanics. Phys. Rev. Lett., 62:485-488, 1989.

    Google Scholar 

  87. A. J. Leggett. Testing the limits of quantum mechanics: Motivation, state of play, prospects. J. Phys. Condens. Matter, 14:R415-R451, 2002.

    Google Scholar 

  88. Z. Olami, H. J. S. Feder, and K. Christensen. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett., 68:1244-1247, 1992.

    Google Scholar 

  89. B. Drossel. Complex scaling behavior of nonconserved self-organized critical systems. Phys. Rev. Lett., 89:238701-238704, 2002.

    Google Scholar 

  90. A. Helmstetter, S. Hergarten, and D. Sornette. Properties of foreshocks and aftershocks of the non-conservative self-organized critical Olami-Feder- Christensen model. Phys. Rev. E, 70:046120, 2004.

    Google Scholar 

  91. D. Sornette. Critical Phenomena in Natural Sciences. Springer, Berlin Heidel-berg New York, Germany, 2004.

    MATH  Google Scholar 

  92. S. Hergarten and H. J. Neugebauer. Foreshocks and aftershocks in the Olami- Feder-Christensen model. Phys. Rev. Lett., 88:2385011-2385014, 2002.

    Google Scholar 

  93. H. W. Barker and A. B. Davis. Approximation methods in atmospheric 3D radiative transfer, Part 2: Unresolved variability and climate applications. In A. Marshak and A. B. Davis (eds. ), 3D Radiative Transfer in Cloudy Atmospheres, pp. 343-383. Springer, Berlin Heidelberg New York, Germany, 2005.

    Google Scholar 

  94. S. Lovejoy. Area-perimeter relation for rain and cloud areas. Science, 216: 185-187, 1982.

    Google Scholar 

  95. A. B. Davis. Effective propagation kernels in structured media with broad spa- tial correlations, illustration with large-scale transport of solar photons through cloudy atmospheres. In F. Graziani (ed. ), Computational Transport Theory - Granlibakken 2004, pp. 84-140. Springer, Berlin Heidelberg New York, 2006.

    Google Scholar 

  96. A. B. Davis and A. Marshak. Lévy kinetics in slab geometry: Scaling of transmission probability. In M. M. Novak and T. G. Dewey (eds. ), Fractal Frontiers, pp. 63-72. World Scientific, Singapore, 1997.

    Google Scholar 

  97. K. Pfeilsticker. First geometrical pathlengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations, 2. Derivation of the Lévy-index for the skylight trans- mitted by mid-latitude clouds. J. Geophys. Res., 104:4101-4116, 1999.

    Google Scholar 

  98. Q. -L. Min, L. C. Harrison, and E. E. Clothiaux. Joint statistics of photon path- length and cloud optical depth: Case studies. J. Geophys. Res., 106:7375-7385, 2001.

    Google Scholar 

  99. A. B. Davis, D. M. Suszcynski, and A. Marshak. Shortwave transport in the cloudy atmosphere by anomalous/Lévy photon diffusion: New diagnostics us- ing FORT É lightning data. In Proceedings of 10th Atmospheric Radiation Mea- surement (ARM) Science Team Meeting, San Antonio, Texas, March 13-17, 2000, 2000.

    Google Scholar 

  100. Q. -L. Min, L. C. Harrison, P. Kiedron, J. Berndt, and E. Joseph. A high-resolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., 109:D02202-D02210, 2004.

    Google Scholar 

  101. A. B. Davis and A. Marshak. Space-time characteristics of light transmitted through dense clouds: A Green function analysis. J. Atmos. Sci., 59:2714-2728, 2002.

    Google Scholar 

  102. T. Scholl, K. Pfeilsticker, A. B. Davis, H. K. Baltink, S. Crewell, U. Löhnert, C. Simmer, J. Meywerk, and M. Quante. Path length distributions for solar photons under cloudy skies: Comparison of measured first and second moments with predictions from classical and anomalous diffusion theories. J. Geophys. Res., 111:D12211-D12226, 2006.

    Google Scholar 

  103. S. V. Buldyrev, M. Gitterman, S. Havlin, A. Ya. Kazakov, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, and G. M. Viswanathan. Properties of Lévy flights on an interval with absorbing boundaries. Physica A, 302:148-161, 2001.

    MATH  Google Scholar 

  104. A. B. Davis, R. F. Cahalan, J. D. Spinehirne, M. J. McGill, and S. P. Love. Off- beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24: 177-185 (Erratum 757-765), 1999.

    Google Scholar 

  105. W. J. Rider, J. A. Greenough, and J. R. Kamm. Combining high-order accuracy with non-oscillatory methods through monotonicity preservation. Int J. Num. Methods Fluids, 47:1253-1259, 2005.

    MATH  Google Scholar 

  106. W. J. Rider, J. A. Greenough, and J. R. Kamm. Accurate monotonicity-and extrema-preserving methods through adaptive nonlinear hybridizations. J. Comput. Phys., 225:1827-1848, 2007.

    MATH  MathSciNet  Google Scholar 

  107. R. Liska and B. Wendroff. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput., 25:995-1017, 2003.

    MATH  MathSciNet  Google Scholar 

  108. R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13:297-319, 1960.

    MathSciNet  Google Scholar 

  109. E. E. Meshkov. Instability of the interface of two gases accelerated by a shock wave. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 5:151-158, 1969.

    Google Scholar 

  110. R. F. Benjamin. An experimenter’s perspective on validating codes and models with experiments having shock-accelerated fluid interfaces. Comput. Sci. Eng., 6:40-49, 2004.

    Google Scholar 

  111. S. Kumar, G. Orlicz, C. Tomkins, C. Goodenough, K. Prestridge, P. Vorobieff, and R. F. Benjamin. Stretching of material lines in shock-accelerated gaseous flows. Phys. Fluids, 17:82107-82117, 2005.

    Google Scholar 

  112. P. J. Roache. Building PDE codes to be verifiable and validatable. Comput. Sci. Eng., 6:30-38, 2004.

    Google Scholar 

  113. R. B. Laughlin. The physical basis of computability. Comput. Sci. Eng., 4:27-30, 2002.

    Google Scholar 

  114. K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc. Unified notation for data assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn., 75(1B):181-189, 1997.

    Google Scholar 

  115. K. S. Brown and J. P. Sethna. Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E, 68:21904-21912, 2003.

    Google Scholar 

  116. J. T. Oden, J. C. Browne, I. Babuska, K. M. Liechti, and L. F. Demkowicz. A computational infrastructure for reliable computer simulations. In P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. Dongarra, A. Y. Zomaya, and Yu. E. Gorbachev (eds. ), Computational Science - ICCS 2003, International Con-ference on Computational Science, Melbourne, Australia and St. Petersburg, Russia, June 2-4, 2003. Proceedings, Part IV, Vol. 2660 of Lecture Notes in Computer Science, pp. 385-390, Springer, Berlin Heidelberg New York, 2003.

    Google Scholar 

  117. S. Wolfram. Cellular Automata and Complexity. Westview Press, Boulder, 2002.

    Google Scholar 

  118. N. Chomsky. Lectures on Government and Binding. Foris, Dordrecht, The Netherlands, 1981.

    Google Scholar 

  119. K. R. Popper. The Logic of Scientific Discovery. Basic Books, New York, 1959.

    MATH  Google Scholar 

  120. R. M. Stein. Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation (Technical Report 020305). Moody’s KMV, New York, NY, 2002.

    Google Scholar 

  121. I. A. Ibragimov and R. Z. Hasminskii. Statistical Estimation: Asymptotic The-ory. Springer, Berlin Heidelberg New York, 1981.

    MATH  Google Scholar 

  122. P. Courtier, E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud, A. Hollingsworth, F. Rabier, and M. Fisher. The ECMWF implementation of three-dimensional variational assimilation (3D-Var), Part 1: Formulation. Q. J. Roy. Meteor. Soc., 124:1783-1807, 1998.

    Google Scholar 

  123. H. A. Ehrenfest. In what way does it become manifest in the fundamental laws of physics that space has three dimensions? In M. J. Klein (ed. ), Collected Scientific Papers. Interscience, New York, 1959.

    Google Scholar 

  124. G. J. Whitrow. Why physical space has three-dimensions. Br. J. Philos. Sci., 6:13-31, 1956.

    Google Scholar 

  125. V. F. Pisarenko and D. Sornette. On statistical methods of parameter estima-tion for deterministically chaotic time-series. Phys. Rev. E, 69:36122-36133, 2004.

    MathSciNet  Google Scholar 

  126. K. M. Hanson and F. M. Hemez. Uncertainty quantification of simulation codes based on experimental data. In Proceedings of 41th AIAA Aerospace Sciences Meeting and Exhibit, pp. 1-10. American Institute of Aeronautics and Astronautics, Reston, 2003.

    Google Scholar 

  127. Y. Malevergne, V. F. Pisarenko, and D. Sornette. Empirical distributions of log-returns: Between the stretched exponential and the power law? Quant. Finance, 5(4):379-401, 2005.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sornette, D., Davis, A.B., Kamm, J.R., Ide, K. (2008). A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics. In: Graziani, F. (eds) Computational Methods in Transport: Verification and Validation. Lecture Notes in Computational Science and Engineering, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77362-7_2

Download citation

Publish with us

Policies and ethics