Automatic Discovery of Geometry Theorems Using Minimal Canonical Comprehensive Gröbner Systems

  • Antonio Montes
  • Tomás Recio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4869)


The main proposal in this paper is the merging of two techniques that have been recently developed. On the one hand, we consider a new approach for computing some specializable Gröbner basis, the so called Minimal Canonical Comprehensive Gröbner Systems (MCCGS) that is -roughly speaking- a computational procedure yielding “good” bases for ideals of polynomials over a field, depending on several parameters, that specialize “well”, for instance, regarding the number of solutions for the given ideal, for different values of the parameters. The second ingredient is related to automatic theorem discovery in elementary geometry. Automatic discovery aims to obtain complementary (equality and inequality type) hypotheses for a (generally false) geometric statement to become true. The paper shows how to use MCCGS for automatic discovering of theorems and gives relevant examples.


automatic discovering comprehensive Gröbner system automatic theorem proving canonical Gröbner system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDR]
    Beltrán, C., Dalzotto, G., Recio, T.: The moment of truth in automatic theorem proving in elementary geometry. In: Botana, F., Roanes-Lozano, E. (eds.) Proceedings ADG 2006 (extended abstracts), Universidad de Vigo (2006)Google Scholar
  2. [BR05]
    Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic approach. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 92–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. [CLLW]
    Chen, X.F., Li, P., Lin, L., Wang, D.K.: Proving geometric theorems by partitioned-parametric Gröbner bases. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 34–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [CW]
    Chen, X.F., Wang, D.K.: The projection of a quasivariety and its application on geometry theorem proving and formula deduction. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 21–30. Springer, Heidelberg (2004)Google Scholar
  5. [Ch84]
    Chou, S.-C.: Proving Elementary Geometry Theorems Using Wu’s Algorithm Contemporary Mathematics. Automated Theorem Proving: After 25 Years, American Mathematical Society, Providence, Rhode Island 29, 243–286 (1984)Google Scholar
  6. [Ch85]
    Chou, S.-C.: Proving and discovering theorems in elementary geometries using Wu’s method Ph.D. Thesis, Department of Mathematics, University of Texas, Austin (1985)Google Scholar
  7. [Ch87]
    Chou, S.C.: A Method for Mechanical Derivation of Formulas in Elementary Geometry. Journal of Automated Reasoning 3, 291–299 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Ch88]
    Chou, S.-C.: Mechanical Geometry Theorem Proving. Mathematics and its Applications, D. Reidel Publ. Comp.  (1988)Google Scholar
  9. [ChG90]
    Chou, S.-C., Gao, X.-S.: Methods for Mechanical Geometry Formula Deriving. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 265–270. ACM Press, New York (1990)CrossRefGoogle Scholar
  10. [CNR99]
    Capani, A., Niesi, G., Robbiano, L.: CoCoA, a System for Doing Computations in Commutative Algebra. The version 4.6 is available at the web site,
  11. [DR]
    Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. J. Automated Reasoning (submitted)Google Scholar
  12. [DG]
    Dolzmann, A., Gilch, L.: Generic Hermitian Quantifier Elimination. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 80–93. Springer, Heidelberg (2004)Google Scholar
  13. [DSW]
    Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. Journal of Automated Reasoning 21(3), 357–380 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [K86]
    Kapur, D.: Using Gröbner basis to reason about geometry problems. J. Symbolic Computation 2(4), 399–408 (1986)zbMATHMathSciNetGoogle Scholar
  15. [K89]
    Kapur, D.: Wu’s method and its application to perspective viewing. In: Kapur, D., Mundy, J.L. (eds.) Geometric Reasoning, The MIT press, Cambridge (1989)Google Scholar
  16. [K95]
    Kapur, D.: An approach to solving systems of parametric polynomial equations. In: Saraswat, Van Hentenryck (eds.) Principles and Practice of Constraint Programming, MIT Press, Cambridge (1995)Google Scholar
  17. [KR00]
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Heidelberg (2000)Google Scholar
  18. [Ko]
    Koepf, W.: Gröbner bases and triangles. The International Journal of Computer Algebra in Mathematics Education 4(4), 371–386 (1998)Google Scholar
  19. [MaMo05]
    Manubens, M., Montes, A.: Improving DISPGB Algorithm Using the Discriminant Ideal. Jour. Symb. Comp. 41, 1245–1263 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  20. [MaMo06]
    Manubens, M., Montes, A.: Minimal Canonical Comprehensive Groebner System. arXiv: math.AC/0611948. (2006)Google Scholar
  21. [Mo02]
    Montes, A.: New Algorithm for Discussing Gröbner Bases with Parameters. Jour. Symb. Comp. 33(1-2), 183–208 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Mo06]
    Montes, A.: About the canonical discussion of polynomial systems with parameters. arXiv: math.AC/0601674 (2006)Google Scholar
  23. [R98]
    Recio, T.: Cálculo simbólico y geométrico. Editorial Síntesis, Madrid (1998)Google Scholar
  24. [RV99]
    Recio, T., Pilar, M., Pilar Vélez, M.: Automatic Discovery of Theorems in Elementary Geometry. J. Automat. Reason. 23, 63–82 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [RB]
    Recio, T., Botana, F.: Where the truth lies (in automatic theorem proving in elementary geometry). In: Laganà, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 761–771. Springer, Heidelberg (2004)Google Scholar
  26. [Ri]
    Richard, P.: Raisonnement et stratégies de preuve dans l’enseignement des mathématiques. Peter Lang Editorial, Berne (2004)Google Scholar
  27. [SS]
    Seidl, A., Sturm, T.: A generic projection operator for partial cylindrical algebraic decomposition. In: Sendra, R. (ed.) ISSAC 2003. Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, Philadelphia, Pennsylvania, pp. 240–247. ACM Press, New York (2003)CrossRefGoogle Scholar
  28. [St]
    Sturm, T.: Real Quantifier Elimination in Geometry. Doctoral dissertation, Department of Mathematics and Computer Science. University of Passau, Germany, D-94030 Passau, Germany (December 1999)Google Scholar
  29. [Wa98]
    Wang, D.: Gröbner Bases Applied to Geometric Theorem Proving and Discovering. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications, 251th edn. London Mathematical Society Lecture Notes Series, vol. 251, pp. 281–301. Cambridge University Press, Cambridge (1998)Google Scholar
  30. [Weis92]
    Weispfenning, V.: Comprehensive Grobner bases. Journal of Symbolic Computation 14(1), 1–29 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Wib06]
    Wibmer, M.: Gröbner bases for families of affine or projective schemes. arXiv: math.AC/0608019. (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Montes
    • 1
  • Tomás Recio
    • 2
  1. 1.Dep. Matemàtica Aplicada 2, Universitat Politècnica de CatalunyaSpain
  2. 2.Dep. Matemáticas, Estadística y Computación, Universidad de CantabriaSpain

Personalised recommendations