Advertisement

Detecting All Dependences in Systems of Geometric Constraints Using the Witness Method

  • Dominique Michelucci
  • Sebti Foufou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4869)

Abstract

In geometric constraints solving, the detection of dependences and the decomposition of the system into smaller subsystems are two important steps that characterize any solving process, but nowadays solvers, which are graph-based in most of the cases, fail to detect dependences due to geometric theorems and to decompose such systems. In this paper, we discuss why detecting all dependences between constraints is a hard problem and propose to use the witness method published recently to detect both structural and non structural dependences. We study various examples of constraints systems and show the promising results of the witness method in subtle dependences detection and systems decomposition.

Keywords

Structural Dependence Geometric Constraint Gradient Vector Cartesian Frame Geometric Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ait-Aoudia, S., Jegou, R., Michelucci, D.: Reduction of constraint systems. In: Compugraphic, Alvor, Portugal, pp. 83–92 (1993)Google Scholar
  2. 2.
    Bonin, J.E.: Introduction to matroid theory. The George Washington University web site (2001)Google Scholar
  3. 3.
    Bruderlin, B., Roller, D. (eds.): Geometric Constraint Solving and Applications. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Cox, D., Little, J., O’ Shea, D.: Ideals, varieties and algorithms, 2nd edn. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  5. 5.
    Coxeter, H.: Projective geometry. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  6. 6.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation, Taunton, U.K. Research Studies Press (1988) ISBN 0-86380-073-4Google Scholar
  7. 7.
    Durand, C., Hoffmann, C.M.: Variational constraints in 3D. In: Shape Modeling International, pp. 90–97 (1999)Google Scholar
  8. 8.
    Gao, X.-S., Zhang, G.: Geometric constraint solving via c-tree decomposition. In: ACM Solid Modelling, pp. 45–55. ACM Press, New York (2003)Google Scholar
  9. 9.
    Graver, J.E., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Math., AMS (1993)Google Scholar
  10. 10.
    Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hoffmann, C.M.: Summary of basic 2D constraint solving. International Journal of Product Lifecycle Management 1(2), 143–149 (2006)Google Scholar
  12. 12.
    Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Decomposition plans for geometric constraint problems, part II: New algorithms. J. Symbolic Computation 31, 409–427 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Decomposition plans for geometric constraint systems, part I: Performance measures for CAD. J. Symbolic Computation 31, 367–408 (2001)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jermann, C., Neveu, B., Trombettoni, G.: A new structural rigidity for geometric constraint systems. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 87–106. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of geometric constraint systems: a survey. Internation Journal of Computational Geometry and Applications (IJCGA) (to appear 2006)Google Scholar
  16. 16.
    Jermann, C., Trombettoni, G., Neveu, B., Rueher, M.: A new heuristic to identify rigid clusters. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 2–6. Springer, Heidelberg (2001)Google Scholar
  17. 17.
    Latham, R.S., Middletich, A.E.: Connectivity analysis: a tool for processing geometric constraints. Computer-Aided Design 28(11), 917–928 (1996)CrossRefGoogle Scholar
  18. 18.
    Lovasz, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebraic Discrete Meth. 3(1), 91–98 (1982)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Michelucci, D., Foufou, S.: Geometric constraint solving: the witness configuration method. Computer Aided Design 38(4), 284–299 (2006)CrossRefGoogle Scholar
  20. 20.
    Owen, J.C.: Algebraic solution for geometry from dimensional constraints. In: Proc. of the Symp. on Solid Modeling Foundations and CAD/CAM Applications, pp. 397–407 (1991)Google Scholar
  21. 21.
    Owen, J.C.: Constraint on simple geometry in two and three dimensions. Int. J. Comput. Geometry Appl. 6(4), 421–434 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Richter-Gebert, J.: Realization Spaces of Polytopes. LNCM, vol. 1643. Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Serrano, D.: Automatic dimensioning in design for manufacturing. In: Sympos. on Solid Modeling Foundations and CAD/CAM Applications, pp. 379–386 (1991)Google Scholar
  24. 24.
    Sitharam, M.: Combinatorial approaches to geometric constraint solving: Problems, progress and directions. In: Dutta, D., Janardan, R., Smid, M. (eds.) AMS/DIMACS. Computer aided design and manufacturing (2005)Google Scholar
  25. 25.
    Wester, M.J.: Contents of Computer Algebra Systems: A Practical Guide. John Wiley and Sons, Chichester (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dominique Michelucci
    • 1
  • Sebti Foufou
    • 1
  1. 1.LE2I UMR CNRS 5158, UFR Sciences, Université de Bourgogne, BP 47870, 21078 Dijon CedexFrance

Personalised recommendations