Advertisement

Constructing a Tetrahedron with Prescribed Heights and Widths

  • Lu Yang
  • Zhenbing Zeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4869)

Abstract

Employing a method of distance geometry, we present a symbolic solution to the following problem: express the edge-lengths of a tetrahedron in terms of its heights and widths.

Keywords

generalized Cayley-Menger algebra widths of a tetrahedron geometric constraint solving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumenthal, L.M.: Theory and Applications of Distance Geometry, Chelsea, New York (1970)Google Scholar
  2. 2.
    Cairns, G., McIntyre, M., Strantzen, J.: Geometric proofs of recent results of Yang Lu. Math. Mag. 66, 263–265 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gröbner, W.: Matrizenrechnung, Bibliographisches Institut AG, Mannheim, F. R. G, pp. 119–126 (1966)Google Scholar
  4. 4.
    Hodge, W.V., Pedoe, D.: Methods of Algebraic Geometry, Cambridge, vol. I (1953)Google Scholar
  5. 5.
    Lee, J.R.: The Law of Cosines in a Tetrahedron. J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math. 4, 1–6 (1997)Google Scholar
  6. 6.
    Michelucci, D., Foufou, S.: Using Cayley-Menger Determinants for Geometric Constraint Solving. In: ACM Symposium on Solid Modelling and Applications (2004)Google Scholar
  7. 7.
    Muir, T.: A Treatise on the Theory of Determinants. In: Longmans, W.H. (ed.) revised by. Green, New York, pp. 166–170 (1933)Google Scholar
  8. 8.
    Sippl, M.J., Scheraga, H.A.: Cayley-Menger coordinates. In: Proc. Natl. Acad., USA, vol.  83, pp. 2283–2287 (1986)Google Scholar
  9. 9.
    Yang, L.: Distance coordinates used in geometric constraint solving. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 216–229. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Yang, L.: A new method of automated theorem proving. In: Johnson, J.H., Loomes, M.J. (eds.) The Mathematical Revolution Inspired by Computing, pp. 115–126. Oxford University Press, New York (1991)Google Scholar
  11. 11.
    Yang, L.: Solving spatial constraints with global distance coordinate system. International Journal of Computational Geometry & Applications 16(5-6), 533–548 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang, L., Zhang, J.Z.: A class of geometric inequalities on finite points. Acta Math. Sinica 23(5), 740–749 (1980)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Yang, L., Zhang, J.Z.: The concept of the rank of an abstract distance space. Journal of China University of Science and Technology 10(4), 52–65 (1980) (in Chinese)MathSciNetGoogle Scholar
  14. 14.
    Yang, L., Zhang, J.Z.: Metric equations in geometry and their applications. I.C.T.P. Research Report, IC/89/281, International Centre for Theoretical Physics, Trieste, Italy (1989)Google Scholar
  15. 15.
    Zhang, J.Z., Yang, L., Yang, X.C.: The realization of elementary configurations in Euclidean space. Science in China A 37(1), 15–26 (1994)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lu Yang
    • 1
    • 2
  • Zhenbing Zeng
    • 1
  1. 1.Institute of Theoretical Computing, East China Normal University, Beijing 100083China
  2. 2.Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041China

Personalised recommendations