Advertisement

A Maple Package for Automatic Theorem Proving and Discovery in 3D-Geometry

  • Eugenio Roanes-Macías
  • Eugenio Roanes-Lozano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4869)

Abstract

A package for investigating problems about configuration theorems in 3D-geometry and performing mechanical theorem proving and discovery is presented. It includes the preparation of the problem, consisting of three processes: defining the geometric objects in the configuration; determining the hypothesis conditions through a point-on-object declaration method; and fixing the thesis conditions. After this preparation, methods based both on Groebner Bases and Wu’s method can be applied to prove thesis conditions or to complete hypothesis conditions. Homogeneous coordinates are used in order to treat projective problems (although affine and Euclidean problems can also be treated). A Maple implementation of the method has been developed. It has been used to extend to 3D some classic 2D theorems.

Keywords

Theorem Prove Hypothesis Condition Computer Algebra System Dynamic Geometry Maple Package 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roanes-Macías, E., Roanes-Lozano, E.: Nuevas Tecnologías en Geometría. Editorial Complutense, Madrid (1994)Google Scholar
  2. 2.
    Roanes-Lozano, E., Roanes-Macías, E.: Automatic Theorem Proving in Elementary Geometry with DERIVE 3. The Intl. DERIVE J. 3(2), 67–82 (1996)Google Scholar
  3. 3.
    Roanes-Lozano, E., Roanes-Macías, E.: Mechanical Theorem Proving in Geometry with DERIVE-3. In: Bärzel, B. (ed.) Teaching Mathematics with DERIVE and the TI-92. ZKL-Texte Nr.2, Bonn, pp. 404–419 (1996)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Kortenkamp, U.: Foundations of Dynamic Geometry (Ph.D. Thesis). Swiss Fed. Inst. Tech. Zurich, Zurich (1999)Google Scholar
  7. 7.
  8. 8.
    Fu, H., Zeng, Z.: A New Dynamic Geometry Software with a Prover and a Solver. In: Proceedings of VisiT-me’2002. Vienna International Symposium on Integrating Technology into Mathematics Teaching, BK-Teachware, Hagenberg, Austria (2002) (CD-ROM)Google Scholar
  9. 9.
  10. 10.
    Wang, D.: GEOTHER 1.1: Handling and Proving Geometric Theorems Automatically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Wang, D.: Epsilon: Software Tool for Polynomial Elimination and Descomposition, http://www-calfor.lip6.fr/~wang/epsilon
  12. 12.
    Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education 38(1-3), 21–35 (2002)CrossRefGoogle Scholar
  13. 13.
    Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Mathematics and Computers in Simulation 61(2), 141–154 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Botana, F., Valcarce, J.L.: Automatic determination of envelopes and other derived curves within a graphic environment. Mathematics and Computers in Simulation 67(1-2), 3–13 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: An Introduction to Geometry Expert. In: McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction - Cade-13. LNCS, vol. 1104, Springer, Heidelberg (1996)Google Scholar
  16. 16.
  17. 17.
    Chou, S.C., Gao, X.S., Ye, Z.: Java Geometry Expert. In: Proceedings of the 10th Asian Technology Conference in Mathematics, pp. 78–84 (2005)Google Scholar
  18. 18.
  19. 19.
    Todd, P.: A Constraint Based Interactive Symbolic Geometry System. In: Botana, F., Roanes-Lozano, E. (eds.) ADG 2006. Sixth Intl. Workshop on Automated Deduction in Geometry. Extended Abstracts, Universidad de Vigo, Vigo, Spain, pp. 141–143 (2006)Google Scholar
  20. 20.
    Roanes-Lozano, E.: Sobre la colaboración de sistemas de geometría dinámica y de álgebra computacional y el nuevo sistema Geometry Expressions. Bol. Soc. Puig Adam 76, 72–90 (2007)MathSciNetGoogle Scholar
  21. 21.
  22. 22.
    Roanes-Lozano, E., Roanes-Macías, E.: How Dinamic Geometry could Complement Computer Algebra Systems (Linking Investigations in Geometry to Automated Theorem Proving). In: Procs. of the Fourth Int. DERIVE/TI-89/TI-92 Conference, BK-Teachware, Hagenberg, Austria (2000) (CD-ROM) Google Scholar
  23. 23.
    Roanes-Lozano, E.: Boosting the Geometrical Possibilities of Dynamic Geometry Systems and Computer Algebra Systems through Cooperation (Plenary Talk). In: Borovcnick, M., Kautschitsch, H. (eds.) Technology in Mathematics Teaching. Procs. of ICTMT-5. Schrifrenreihe Didaktik der Mathematik, öbv&hpt, Wien, Austria, vol. 25, pp. 335–348 (2002)Google Scholar
  24. 24.
    Roanes-Lozano, E., Roanes-Macías, E., Villar, M.: A Bridge Between Dynamic Geometry and Computer Algebra. Mathematical and Computer Modelling 37(9–10), 1005–1028 (2003)zbMATHCrossRefGoogle Scholar
  25. 25.
    Anonymous, The Geometer’s Sketchpad User Guide and Reference Manual, vol. 3. Key Curriculum Press, Berkeley, CA (1995)Google Scholar
  26. 26.
    Anonymous, The Geometer’s Sketchpad Reference Manual, vol. 4. Key Curriculum Press, Emeryville, CA (2001)Google Scholar
  27. 27.
  28. 28.
    Botana, F., Abanades, M.A., Escribano, J.: Computing Locus Equations for Standard Dynamic Geometry Environments. In: Computational Science - ICCS 2007 / CASA 2007 Workshop. LNCS, vol. 4488, pp. 227–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
    Botana, F.: Automatic Determination of Algebraic Surfaces as Loci of Points. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, Springer, Heidelberg (2003)Google Scholar
  32. 32.
    Roanes-Macías, E., Roanes-Lozano, E.: Automatic determination of geometric loci. 3D-Extension of Simson-Steiner Theorem. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 157–173. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Hestenes, D., Ziegler, R.: Projective Geometry with Clifford Algebra. Acta Applicandae Mathematicae 23, 25–63 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Roanes-Macías, E., Roanes-Lozano, E.: Extensión a IR 3 con seudodivisiones de los teoremas de Simson-Steiner-Guzmán. In: Montes, A. (ed.) Actas del 60 Encuentro de Algebra Computacional y Aplicaciones EACA 2000, Universitat Politecnica de Catalunya, Barcelona, pp. 331–340 (2000)Google Scholar
  35. 35.
    Roanes-Macías, E., Roanes-Lozano, E.: A Completion of Hypotheses Method for 3D-Geometry. 3D-Extensions of Ceva and Menelaus Theorems. In: Díaz Bánez, J.M., Márquez, A., Portillo, J.R. (eds.) Proceedings of 20th European Workshop on Computational Geometry, Universidad de Sevilla, Seville, pp. 85–88 (2004)Google Scholar
  36. 36.
    Roanes-Macías, E., Roanes-Lozano, E.: A method for outlining 3D-problems in order to study them mechanically. Application to prove the 3D-version of Desargues Theorem. In: González-Vega, L., Recio, T. (eds.) Proceedings of EACA 2004, Univ. of Cantabria, Santander, Spain, pp. 237–242 (2004)Google Scholar
  37. 37.
    Buchberger, B.: An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (in German), Ph.D. Thesis. Math. Ins., Univ. of Innsbruck, Innsbruck, Austria (1965)Google Scholar
  38. 38.
    Buchberger, B.: Applications of Gröbner Bases in non-linear Computational Geometry. In: Rice, J.R. (ed.) Mathematical Aspects of Scientific Software, pp. 59–87. Springer, New York (1988)Google Scholar
  39. 39.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, New York (2005)Google Scholar
  40. 40.
    Wu, W.T.: On the decision problem and the mechanization of theorem-proving in elementary Geometry. A.M.S. Contemporary Mathematics 29, 213–234 (1984)Google Scholar
  41. 41.
    Wu, W.T.: Some recent advances in Mechanical Theorem-Proving of Geometries. A.M.S. Contemporary Mathematics 29, 235–242 (1984)Google Scholar
  42. 42.
    Wu, W.T.: Mechanical Theorem Proving in Geometries. In: Text and Monographs in Symbolic Computation, Wien, Springer, Heidelberg (1994)Google Scholar
  43. 43.
    Chou, S.C.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht (1988)zbMATHGoogle Scholar
  44. 44.
    Kapur, D., Mundy, J.L.: Wu’s method and its application to perspective viewing. In: Kapur, D., Mundy, J.L. (eds.) Geometric Reasoning, pp. 15–36. MIT Press, Cambridge MA (1989)Google Scholar
  45. 45.
    Recio, T., Vélez, M.P.: Automatic Discovery of Theorems in Elementary Geometry. Journal of Automated Reasoning 23, 63–82 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Davis, H.: Menelaus and Ceva Theorems and its many applications, http://hamiltonious.virtualave.negt/essays/othe/finalpaper4.htm
  47. 47.
    de Guzmán, M.: An Extension of the Wallace-Simson Theorem: Projecting in Arbitrary Directions. Mathematical Monthly 106, 574–580 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Eugenio Roanes-Macías
    • 1
  • Eugenio Roanes-Lozano
    • 1
  1. 1.Universidad Complutense de Madrid, Facultad de Educación, Dept. de Algebra, c/ Rector Royo Villanova s/n, 28040-MadridSpain

Personalised recommendations