Skip to main content

Mutagenesis of the Cytomegalovirus Genome

  • Chapter
Human Cytomegalovirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 325))

Bacterial artificial chromosomes (BACs) are DNA molecules assembled in vitro from defined constituents and are stably maintained as one large DNA fragment in Escherichia coli. Artificial chromosomes are useful for genome sequencing programs, for transduction of DNA segments into eukaryotic cells, and for functional characterization of genomic regions and entire viral genomes such as cytomegalovirus (CMV) genomes. CMV genomes in BACs are ready for the advanced tools of E. coli genetics. Homologous and site-specific recombination, or transposon-based approaches allow for the engineering of virtually any kind of genetic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler H, Messerle M, Wagner M, Koszinowski UH (2000) Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974.

    Article  PubMed  CAS  Google Scholar 

  • Akel HM, Sweet C (1993) Isolation and preliminary characterisation of twenty-five temperature-sensitive mutants of mouse cytomegalovirus. FEMS Microbiol Lett 113:253–260.

    Article  PubMed  CAS  Google Scholar 

  • Akel HM, Furarah AM, Sweet C (1993) Further studies of 31 temperature-sensitive mutants of mouse cytomegalovirus: thermal stability, replication and analysis of temperature-sensitive functions by temperature shift. FEMS Microbiol Lett 114:311–316.

    Article  PubMed  CAS  Google Scholar 

  • Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521.

    Article  PubMed  CAS  Google Scholar 

  • Angulo A, Messerle M, Koszinowski UH, Ghazal P (1998) Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol 72:8502–8509.

    PubMed  CAS  Google Scholar 

  • Angulo A, Ghazal P, Messerle M (2000a) The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol 74:11129–11136.

    Article  PubMed  CAS  Google Scholar 

  • Angulo A, Kerry D, Huang H, Borst EM, Razinsky A, Wu J, Hobom U, Messerle M, Ghazal P (2000b) Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J Virol 74:2826–2839.

    Article  PubMed  CAS  Google Scholar 

  • Bevan IS, Sammons CC, Sweet C (1996) Investigation of murine cytomegalovirus latency and reactivation in mice using viral mutants and the polymerase chain reaction. J Med Virol 48:308–320.

    Article  PubMed  CAS  Google Scholar 

  • Biery MC, Stewart FJ, Stellwagen AE, Raleigh EA, Craig NL (2000) A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 28:1067–1077.

    Article  PubMed  CAS  Google Scholar 

  • Blomfield IC, Vaughn V, Rest RF, Eisenstein BI (1991) Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5:1447–1457.

    Article  PubMed  CAS  Google Scholar 

  • Borst EM, Hahn G, Koszinowski UH, Messerle M (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73:8320–8329.

    PubMed  CAS  Google Scholar 

  • Borst EM, Mathys S, Wagner M, Muranyi W, Messerle M (2001) Genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth. J Virol 75:1450–1458.

    Article  PubMed  CAS  Google Scholar 

  • Brune W, Menard C, Hobom U, Odenbreit S, Messerle M, Koszinowski UH (1999) Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis. Nat Biotechnol 17:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Brune W, Messerle M, Koszinowski UH (2000) Forward with BACs: new tools for herpesvirus genomics. Trends Genet 16:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Brune W, Hasan M, Krych M, Bubic I, Jonjic S, Koszinowski UH (2001a) Secreted virus-encoded proteins reflect murine cytomegalovirus productivity in organs. J Infect Dis 184:1320–1324.

    Article  PubMed  CAS  Google Scholar 

  • Brune W, Menard C, Heesemann J, Koszinowski UH (2001b) A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291:303–305.

    Article  PubMed  CAS  Google Scholar 

  • Bubeck A, Wagner M, Ruzsics Z, Lötzerich M, Iglesias M, Singh IR, Koszinowski UH (2004) Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J Virol 78:8026–8035.

    Article  PubMed  CAS  Google Scholar 

  • Bubic I, Wagner M, Krmpotic A, Saulig T, Kim S, Yokoyama WM, Jonjic S, Koszinowski UH (2004) Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 78:7536–7544.

    Article  PubMed  CAS  Google Scholar 

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14.

    Article  PubMed  CAS  Google Scholar 

  • Cicin-Sain L, Brune W, Bubic I, Jonjic S, Koszinowski UH (2003) Vaccination of mice with bacteria carrying a cloned herpesvirus genome reconstituted in vivo. J Virol 77:8249–8255.

    Article  PubMed  CAS  Google Scholar 

  • Cihlar T, Fuller MD, Cherrington JM (1998) Characterization of drug resistance-associated mutations in the human cytomegalovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol 72:5927–5936.

    PubMed  CAS  Google Scholar 

  • Craig NL (1997) Target site selection in transposition. Annu Rev Biochem 66:437–474.

    Article  PubMed  CAS  Google Scholar 

  • Crowder S, Kirkegaard K (2005) Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat Genet 37:701–709.

    Article  PubMed  CAS  Google Scholar 

  • Darji A, Guzman CA, Gerstel B, Wachholz P, Timmis KN, Wehland J, Chakraborty T, Weiss S (1997) Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91:765–775.

    Article  PubMed  CAS  Google Scholar 

  • Dion M, Yelle J, Hamelin C (1990) Physical mapping of a temperature-sensitive mutation of human cytomegalovirus by marker rescue. Genet Anal Tech Appl 7:32–34.

    Article  PubMed  CAS  Google Scholar 

  • Dorange F, Tischer BK, Vautherot JF, Osterrieder N (2002) Characterization of Marek’s disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth. J Virol 76:1959–1970.

    Article  PubMed  CAS  Google Scholar 

  • Ehsani ME, Abraha TW, Netherland-Snell C, Mueller N, Taylor MM, Holwerda B (2000) Generation of mutant murine cytomegalovirus strains from overlapping cosmid and plasmid clones. J Virol 74:8972–8979.

    Article  PubMed  CAS  Google Scholar 

  • Gill TA, Morley PJ, Sweet C (2000) Replication-defective mutants of mouse cytomegalovirus protect against wild-type virus challenge. J Med Virol 62:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Greaves RF, Brown JM, Vieira J, Mocarski ES (1995) Selectable insertion and deletion mutagenesis of the human cytomegalovirus genome using the Escherichia coli guanosine phosphoribosyl transferase (gpt) gene. J Gen Virol 76:2151–2160.

    Article  PubMed  CAS  Google Scholar 

  • Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16:862–866.

    Article  PubMed  CAS  Google Scholar 

  • Heider JA, Bresnahan WA, Shenk TE (2002) Construction of a rationally designed human cytomegalovirus variant encoding a temperature-sensitive immediate-early 2 protein. Proc Natl Acad Sci USA 99:3141–3146.

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222.

    Article  PubMed  CAS  Google Scholar 

  • Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH (2000) Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74:7720–7729.

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh BC, Hubinette MM, Qiang D, MacDonald ML, Tufaro F (1999) Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther 6:922–930.

    Article  PubMed  CAS  Google Scholar 

  • Ihara S, Hirai K, Watanabe Y (1978) Temperature-sensitive mutants of human cytomegalovirus: isolation and partial characterization of DNA-minus mutants. Virology 84:218–221.

    Article  PubMed  CAS  Google Scholar 

  • Ihara S, Takekoshi M, Mori N, Sakuma S, Hashimoto J, Watanabe Y (1994) Identification of mutation sites of a temperature-sensitive mutant of HCMV DNA polymerase activity. Arch Virol 137:263–275.

    Article  PubMed  CAS  Google Scholar 

  • Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6:84–89.

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB (2001) The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–978.

    Article  PubMed  CAS  Google Scholar 

  • Kemble G, Duke G, Winter R, Spaete R (1996) Defined large-scale alterations of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. J Virol 70:2044–2048.

    PubMed  CAS  Google Scholar 

  • Laurent LC, Olsen MN, Crowley RA, Savilahti H, Brown PO (2000) Functional characterization of the human immunodeficiency virus type 1 genome by genetic footprinting. J Virol 74:2760–2769.

    Article  PubMed  CAS  Google Scholar 

  • Lötzerich M, Ruzsics Z, Koszinowski UH (2006) Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 80:73–84.

    Article  PubMed  Google Scholar 

  • Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579.

    PubMed  CAS  Google Scholar 

  • Manning WC, Mocarski ES (1988) Insertional mutagenesis of the murine cytomegalovirus genome: one prominent alpha gene (ie2) is dispensable for growth. Virology 167:477–484.

    PubMed  CAS  Google Scholar 

  • McGregor A, Liu F, Schleiss MR (2004) Identification of essential and non-essential genes of the guinea pig cytomegalovirus (GPCMV) genome via transposome mutagenesis of an infectious BAC clone. Virus Res 101:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Menard C, Wagner M, Ruzsics Z, Holak K, Brune W, Campbell AE, Koszinowski UH (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570.

    Article  PubMed  CAS  Google Scholar 

  • Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 94:14759–14763.

    Article  PubMed  CAS  Google Scholar 

  • Mocarski ES, Post LE, Roizman B (1980) Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22:243–255.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RC, Berg P (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci USA 78:2072–2076.

    Article  PubMed  CAS  Google Scholar 

  • Murphy EA, Streblow DN, Nelson JA, Stinski MF (2000) The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S phase of permissive cells. J Virol 74:7108–7118.

    Article  PubMed  CAS  Google Scholar 

  • Muyrers JP, Zhang Y, Stewart AF (2000) ET-cloning: think recombination first. Genet Eng (New York) 22:77–98.

    CAS  Google Scholar 

  • O’Connor M, Peifer M, Bender W (1989) Construction of large DNA segments in Escherichia coli. Science 244:1307–1312.

    Article  PubMed  Google Scholar 

  • Post LE, Roizman B (1981) A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25:227–232.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay M (1994) Yeast artificial chromosome cloning. Mol Biotechnol 1:181–201.

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg SM, Olsen MN, Laurent LC, Crowley RA, Brown PO (2001) Comprehensive mutational analysis of the Moloney murine leukemia virus envelope protein. J Virol 75:11851–11862.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph J, Osterrieder N (2002) Equine herpesvirus type 1 devoid of gM and gp2 is severely impaired in virus egress but not direct cell-to-cell spread. Virology 293:356–367.

    Article  PubMed  CAS  Google Scholar 

  • Rupp B, Ruzsics Z, Sacher T, Koszinowski UH (2005) Conditional cytomegalovirus replication in vitro and in vivo. J Virol 79:486–494.

    Article  PubMed  CAS  Google Scholar 

  • Rupp B, Ruzsics Z, Buser C, Adler B, Walther P, Koszinowski UH (2007) Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50. J Virol 81:5508–5517.

    Article  PubMed  CAS  Google Scholar 

  • Ruzsics Z, Wagner M, Osterlehner A, Cook J, Koszinowski U, Burgert HG (2006) Transposon-assisted cloning and traceless mutagenesis of adenoviruses: Development of a novel vector based on species D. J Virol 80:8100–8113.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, Clark CL, Yen JY, Dwarakanath R, Spector DH (2002) Viable human cytomegalovirus recombinant virus with an internal deletion of the IE2 86 gene affects late stages of viral replication. J Virol 76:2973–2989.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer PA (1975) Temperature-sensitive mutants of herpesviruses. Curr Top Microbiol Immunol 70:51–100.

    PubMed  CAS  Google Scholar 

  • Schaffer PA, Weller SK, Pancake BA, Coen DM (1984) Genetics of herpes simplex virus. J Invest Dermatol 83:42s–47s.

    Article  PubMed  CAS  Google Scholar 

  • Schalkwyk LC, Francis F, Lehrach H (1995) Techniques in mammalian genome mapping. Curr Opin Biotechnol 6:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher D, Tischer BK, Reddy SM, Osterrieder N (2001) Glycoproteins E and I of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J Virol 75:11307–11318.

    Article  PubMed  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797.

    Article  PubMed  CAS  Google Scholar 

  • Smiley JR (1980) Construction in vitro and rescue of a thymidine kinase-deficient deletion mutation of herpes simplex virus. Nature 285:333–335.

    Article  PubMed  CAS  Google Scholar 

  • Smith GA, Enquist LW (1999) Construction and transposon mutagenesis in Escherichia coli of a full- length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol 73:6405–6414.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Mocarski ES (1987) Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci USA 84:7213–7217.

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz M, Le Coq D, Djemia HB, Gay P (1983) Genetic analysis of sacB, the structural gene of a secreted enzyme, levansucrase of Bacillus subtilis Marburg. Mol Gen Genet 191:138–144.

    Article  PubMed  CAS  Google Scholar 

  • Strive T, Borst E, Messerle M, Radsak K (2002) Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture. J Virol 76:1252–1264.

    PubMed  CAS  Google Scholar 

  • Tao Q, Zhang HB (1998) Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res 26:4901–4909.

    Article  PubMed  CAS  Google Scholar 

  • Tischer BK, Schumacher D, Messerle M, Wagner M, Osterrieder N (2002) The products of the UL10 (gM) and the UL49.5 genes of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J Gen Virol 83:997–1003.

    PubMed  CAS  Google Scholar 

  • Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197.

    Article  PubMed  CAS  Google Scholar 

  • van Zijl M, Quint W, Briaire J, de Rover T, Gielkens A, Berns A (1988) Regeneration of herpesviruses from molecularly cloned subgenomic fragments. J Virol 62:2191–2195.

    PubMed  Google Scholar 

  • Wagner M, Koszinowski UH (2004) Mutagenesis of viral BACs with linear PCR fragments (ET recombination). Methods Mol Biol 256:257–268.

    PubMed  CAS  Google Scholar 

  • Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060.

    PubMed  CAS  Google Scholar 

  • Wagner M, Michel D, Schaarschmidt P, Vaida B, Jonjic S, Messerle M, Mertens T, Koszinowski U (2000) Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 74:10729–10736.

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816.

    Article  PubMed  CAS  Google Scholar 

  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36.

    Article  PubMed  Google Scholar 

  • Wolff D, Jahn G, Plachter B (1993) Generation and effective enrichment of selectable human cytomegalovirus mutants using site-directed insertion of the neo gene. Gene 130:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi K, Rapp F (1977) Temperature-sensitive mutants of human cytomegalovirus. J Virol 24:416–418.

    PubMed  CAS  Google Scholar 

  • Yu D, Silva MC, Shenk T (2003) Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci USA 100:12396–12401.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann A, Trilling M, Wagner M, Wilborn M, Bubic I, Jonjic S, Koszinowski U, Hengel H (2005) A cytomegaloviral protein reveals a dual role for STAT2 in IFN-{gamma} signaling and antiviral responses. J Exp Med 201:1543–1553.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruzsics, Z., Koszinowski, U.H. (2008). Mutagenesis of the Cytomegalovirus Genome. In: Shenk, T.E., Stinski, M.F. (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77349-8_3

Download citation

Publish with us

Policies and ethics