Skip to main content

Constructive Algorithms for the Constant Distance Traveling Tournament Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3867)

Abstract

The traveling tournament problem considers scheduling round-robin tournaments that minimize traveling distance, which is an important issue in sports scheduling. Various studies on the traveling tournament problem have appeared in recent years, and there are some variants of this problem. In this paper, we deal with the constant distance traveling tournament problem, which is a special class of the traveling tournament problem. This variant is essentially equivalent to the problem of ‘maximizing breaks’ and that of ‘minimizing breaks’, which is another significant objective in sports scheduling. We propose a lower bound of the optimal value of the constant distance traveling tournament problem, and two constructive algorithms that produce feasible solutions whose objective values are close to the proposed lower bound. For some size of instances, one of our algorithms yields optimal solutions.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9, 177–193 (2006)

    CrossRef  MATH  Google Scholar 

  2. de Werra, D.: Geography, games and graphs. Discrete Applied Mathematics 2, 327–337 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem: description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–585. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  4. ILOG: ILOG CPLEX 9.0 (2003)

    Google Scholar 

  5. Miyashiro, R., Iwasaki, H., Matsui, T.: Characterizing feasible pattern sets with a minimum number of breaks. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 78–99. Springer, Heidelberg (2003)

    Google Scholar 

  6. Miyashiro, R., Matsui, T.: A polynomial-time algorithm to find an equitable home–away assignment. Operations Research Letters 33, 235–241 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Rasmussen, R.V., Trick, M.A.: A Benders approach for the constrained minimum break problem. European Journal of Operational Research 177, 198–213 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 167–181. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  9. Rasmussen, R.V., Trick, M.A.: Round robin scheduling – a survey. Working Paper 2006/2, Department of Operations Research, University of Aarhus (2006)

    Google Scholar 

  10. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. European Journal of Operational Research 179, 775–787 (2007)

    CrossRef  MATH  Google Scholar 

  11. Russell, R.A., Leung, J.M.Y.: Devising a cost effective schedule for a baseball league. Operations Research 42, 614–625 (1994)

    CrossRef  MATH  Google Scholar 

  12. Trick, M.: Challenge traveling tournament problem (2006), http://mat.gsia.cmu.edu/TOURN/

  13. Urrutia, S., Ribeiro, C.C.: Maximizing breaks and bounding solutions to the mirrored traveling tournament problem. Discrete Applied Mathematics 154, 1932–1938 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Van Hentenryck, P., Vergados, Y.: Traveling tournament scheduling: a systematic evaluation of simulated annealing. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 228–243. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edmund K. Burke Hana Rudová

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fujiwara, N., Imahori, S., Matsui, T., Miyashiro, R. (2007). Constructive Algorithms for the Constant Distance Traveling Tournament Problem. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, vol 3867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77345-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77345-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77344-3

  • Online ISBN: 978-3-540-77345-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics