Skip to main content

An Experimental Study on Hyper-heuristics and Exam Timetabling

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3867)

Abstract

Hyper-heuristics are proposed as a higher level of abstraction as compared to the metaheuristics. Hyper-heuristic methods deploy a set of simple heuristics and use only non-problem-specific data, such as fitness change or heuristic execution time. A typical iteration of a hyper-heuristic algorithm consists of two phases: the heuristic selection method and move acceptance. In this paper, heuristic selection mechanisms and move acceptance criteria in hyper-heuristics are analyzed in depth. Seven heuristic selection methods and five acceptance criteria are implemented. The performance of each selection and acceptance mechanism pair is evaluated on 14 well-known benchmark functions and 21 exam timetabling problem instances.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D.: An empirical study of bit vector function optimization. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 170–215. Pitman, London (1987)

    Google Scholar 

  2. Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine. In: InTech 2003. Proceedings of the International Conference on Intelligent Technologies, Chiang Mai, Thailand, pp. 132–141 (December 2003)

    Google Scholar 

  3. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 57, pp. 457–474. Kluwer, Dordrecht (2003)

    CrossRef  Google Scholar 

  4. Burke, E., Newall, J.P., Weare, R.F.: A memetic algorithm for university exam timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

    Google Scholar 

  5. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling and rostering. Journal of Heuristics 9, 451–470 (2003)

    CrossRef  Google Scholar 

  6. Burke, E., Elliman, D., Ford, P., Weare, B.: Examination timetabling in British universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)

    Google Scholar 

  7. Burke, E.K., Newall, J.P.: Solving examination timetabling problems through adaption of heuristic orderings: models and algorithms for planning and scheduling problems. Annals of Operations Research 129, 107–134 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper heuristic for timetabling problems. European Journal of Operational Research 176, 177–192 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Burke, E.K., Petrovic, S., Qu, R.: Case based heuristic selection for timetabling problems. Journal of Scheduling 9, 115–132 (2006)

    CrossRef  MATH  Google Scholar 

  10. Carter, M.W, Laporte, G., Lee, S.T.: Examination timetabling: algorithmic strategies and applications. Journal of the Operational Research Society 47, 373–383 (1996)

    CrossRef  Google Scholar 

  11. Cowling, P., Kendall, G., Soubeiga, E.: A hyper-heuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. Davis, L.: Bit climbing, representational bias, and test suite design. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 18–23 (1991)

    Google Scholar 

  13. De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. Thesis, University of Michigan (1975)

    Google Scholar 

  14. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  15. Easom, E.E.: A survey of global optimization techniques. M.Eng. Thesis, University of Louisville, KY (1990)

    Google Scholar 

  16. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal of Computing 5, 691–703 (1976)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Goldberg, D.E.: Genetic algorithms and Walsh functions: Part I, A gentle introduction. Complex Systems 3, 129–152 (1989)

    MATH  MathSciNet  Google Scholar 

  18. Goldberg, D.E.: Genetic algorithms and Walsh functions: Part II, Deception and its analysis. Complex Systems 3, 153–171 (1989)

    MATH  MathSciNet  Google Scholar 

  19. Griewangk, A.O.: Generalized descent of global optimization. Journal of Optimization Theory and Applications 34, 11–39 (1981)

    CrossRef  MathSciNet  Google Scholar 

  20. Kendall, G., Mohamad, M.: Channel assignment in cellular communication using a great deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International Conference on Networks, pp. 769–773. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  21. Marin, H.T.: Combinations of GAs and CSP strategies for solving examination timetabling problems. Ph.D. Thesis, Instituto Tecnologico y de Estudios Superiores de Monterrey (1998)

    Google Scholar 

  22. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for the examination timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

    Google Scholar 

  23. Mitchell, M., Forrest, S.: Fitness landscapes: Royal Road functions. In: Baeck, T., Fogel, D., Michalewiz, Z. (eds.) Handbook of Evolutionary Computation, Institute of Physics Publishing, Bristol and Oxford University Press, Oxford (1997)

    Google Scholar 

  24. Özcan, E.: Towards an XML based standard for timetabling problems: TTML. In: Multidisciplinary Scheduling: Theory and Applications, vol. 163 (24), Springer, Berlin (2005)

    Google Scholar 

  25. Özcan, E., Ersoy, E.: Final exam scheduler – FES. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1356–1363 (2005)

    Google Scholar 

  26. Paquete, L.F., Fonseca, C.M.: A study of examination timetabling with multiobjective evolutionary algorithms. In: MIC 2001. Proceedings of the 4th Metaheuristics International Conference, pp. 149–154.

    Google Scholar 

  27. Petrovic, S., Yang, Y., Dror, M.: Case-based initialisation for examination timetabling. In: MISTA 2003. Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications, Nottingham, pp. 137–154 (August 2003)

    Google Scholar 

  28. Rastrigin, L.A.: Extremal Control Systems. Theoretical Foundations of Engineering Cybernetics Series. Nauka, Moscow (1974)

    Google Scholar 

  29. Rattadilok, P., Gaw, A., Kwan, R.S.K.: Distributed choice function hyperheuristics for timetabling and scheduling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 51–67. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  30. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, New York (1981) [translation of Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie (1977)]

    Google Scholar 

  31. Whitley, D.: Fundamental principles of deception in genetic search. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA (1991)

    Google Scholar 

  32. Wong, T., Côté, P., Gely, P.: Final exam timetabling: a practical approach. In: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Winnipeg, vol. 2, pp. 726–731 (May 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edmund K. Burke Hana Rudová

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilgin, B., Özcan, E., Korkmaz, E.E. (2007). An Experimental Study on Hyper-heuristics and Exam Timetabling. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, vol 3867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77345-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77345-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77344-3

  • Online ISBN: 978-3-540-77345-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics