Abstract
The modeling and solution approaches being used to automate construction of course timetables at a large university are discussed. A course structure model is presented that allows this complex real-world problem to be described using a classical formulation. The problem is then tackled utilizing a course timetabling solver model that transforms it into a constraint satisfaction and optimization problem. The tiered structure of this approach provides flexibility that is helpful in solving the multiple subproblems that arise from decomposition of the university-wide problem. A production system has been partially implemented and results of early use are presented. Practical issues raised during the implementation of the automated timetabling system are also discussed.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Abdennadher, S., Marte, M.: University course timetabling using constraint handling rules. Journal of Applied Artificial Intelligence 14, 311–326 (2000)
Amintoosi, M., Haddadnia, J.: Feature selection in a fuzzy student sectioning algorithm. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 147–160. Springer, Heidelberg (2005)
Aubin, J., Ferland, J.A.: A large scale timetabling problem. Computers and Operations Research 16, 67–77 (1989)
Barták, R., Müller, T., Hana Rudová, H.: A new approach to modeling and solving minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer, Heidelberg (2004)
Cambazard, H., Demazeau, F., Jussien, N., David, P.: Interactively solving school timetabling problems using extensions of constraint programming. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 190–207. Springer, Heidelberg (2005)
Carter, M.W.: A comprehensive course timetabling and student scheduling system at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 64–82. Springer, Heidelberg (2001)
Carter, M.W., Gilbert Laporte, G.: Recent developments in practical course timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)
Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo, CA (2003)
Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building university timetables using constraint logic programming. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)
Hertz, A.: Tabu search for large scale timetabling problems. European Journal of Operational Research 54, 39–47 (1991)
McCollum, B.: A perspective on bridging the gap in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007)
Mooney, E.L., Rardin, R.L., Parmenter, W.J.: Large scale classroom scheduling. IIE Transactions 28, 369–378 (1996)
Müller, T.: Constraint-based Timetabling. Ph.D. Thesis, Charles University in Prague, Faculty of Mathematics and Physics (2005)
Müller, T., Barták, R., Rudová, H.: Conflict-based statistics. In: Gottlieb, J., Landa Silva, D., Musliu, N., Soubeiga, E. (eds.): EU/ME Workshop on Design and Evaluation of Advanced Hybrid Meta-Heuristics, University of Nottingham (2004)
Müller, T., Barták, R., Rudová, H.: Minimal perturbation problem in course timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer, Heidelberg (2005)
Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J.Y.-T. (ed.) The Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45, CRC Press, Boca Raton, FL (2004)
Qualizza, A., Serafini, P.: A column generation scheme for faculty timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 161–173. Springer, Heidelberg (2005)
Rudová, H., Murray, K.: University course timetabling with soft constraints. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–328. Springer, Heidelberg (2003)
Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13, 87–127 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Murray, K., Müller, T., Rudová, H. (2007). Modeling and Solution of a Complex University Course Timetabling Problem. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, vol 3867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77345-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-77345-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77344-3
Online ISBN: 978-3-540-77345-0
eBook Packages: Computer ScienceComputer Science (R0)
