Skip to main content

Modeling and Solution of a Complex University Course Timetabling Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3867)

Abstract

The modeling and solution approaches being used to automate construction of course timetables at a large university are discussed. A course structure model is presented that allows this complex real-world problem to be described using a classical formulation. The problem is then tackled utilizing a course timetabling solver model that transforms it into a constraint satisfaction and optimization problem. The tiered structure of this approach provides flexibility that is helpful in solving the multiple subproblems that arise from decomposition of the university-wide problem. A production system has been partially implemented and results of early use are presented. Practical issues raised during the implementation of the automated timetabling system are also discussed.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdennadher, S., Marte, M.: University course timetabling using constraint handling rules. Journal of Applied Artificial Intelligence 14, 311–326 (2000)

    CrossRef  Google Scholar 

  2. Amintoosi, M., Haddadnia, J.: Feature selection in a fuzzy student sectioning algorithm. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 147–160. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  3. Aubin, J., Ferland, J.A.: A large scale timetabling problem. Computers and Operations Research 16, 67–77 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Barták, R., Müller, T., Hana Rudová, H.: A new approach to modeling and solving minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer, Heidelberg (2004)

    Google Scholar 

  5. Cambazard, H., Demazeau, F., Jussien, N., David, P.: Interactively solving school timetabling problems using extensions of constraint programming. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 190–207. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  6. Carter, M.W.: A comprehensive course timetabling and student scheduling system at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 64–82. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Carter, M.W., Gilbert Laporte, G.: Recent developments in practical course timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  8. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo, CA (2003)

    Google Scholar 

  9. Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building university timetables using constraint logic programming. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)

    Google Scholar 

  10. Hertz, A.: Tabu search for large scale timetabling problems. European Journal of Operational Research 54, 39–47 (1991)

    CrossRef  MATH  Google Scholar 

  11. McCollum, B.: A perspective on bridging the gap in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007)

    Google Scholar 

  12. Mooney, E.L., Rardin, R.L., Parmenter, W.J.: Large scale classroom scheduling. IIE Transactions 28, 369–378 (1996)

    CrossRef  Google Scholar 

  13. Müller, T.: Constraint-based Timetabling. Ph.D. Thesis, Charles University in Prague, Faculty of Mathematics and Physics (2005)

    Google Scholar 

  14. Müller, T., Barták, R., Rudová, H.: Conflict-based statistics. In: Gottlieb, J., Landa Silva, D., Musliu, N., Soubeiga, E. (eds.): EU/ME Workshop on Design and Evaluation of Advanced Hybrid Meta-Heuristics, University of Nottingham (2004)

    Google Scholar 

  15. Müller, T., Barták, R., Rudová, H.: Minimal perturbation problem in course timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  16. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J.Y.-T. (ed.) The Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45, CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  17. Qualizza, A., Serafini, P.: A column generation scheme for faculty timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 161–173. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  18. Rudová, H., Murray, K.: University course timetabling with soft constraints. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–328. Springer, Heidelberg (2003)

    Google Scholar 

  19. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13, 87–127 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edmund K. Burke Hana Rudová

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murray, K., Müller, T., Rudová, H. (2007). Modeling and Solution of a Complex University Course Timetabling Problem. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, vol 3867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77345-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77345-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77344-3

  • Online ISBN: 978-3-540-77345-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics