Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4840))

Included in the following conference series:

  • 1643 Accesses

Abstract

This paper proposes a framework, based on a spatio-temporal attentive mechanism, for automatic region-of-interest determination, corresponding to events in video sequences of natural scenes of dynamic environments. We view this work as a preliminary step towards the solution of high-level semantic event analysis. More specifically, we wish to detect a visual event within a cluttered scene, without intensive training algorithms. In contrast to event detection methods used in the literature, which drive attention based on motion and spatial location hypothesis, in our approach the visual attention is region-driven as well as feature-driven. For this purpose, a two stages attention mechanism is proposed. In a first phase, spatio-temporal activity analysis extracts key-frames from the image sequence and selects salient areas within these frames. The three types of visual attention features are used, namely, intensity, color and motion. Consequently, the selected areas are further processed to determine the most active region, based on a newly defined region saliency measure. Qualitative and quantitative results, using the proposed framework, are illustrated envisaging the application domain of change detection in automated visual surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Varadharajan, C.: A Wavelet-Based System for Event Detection in Online Real-time Sensor Data. Massachusetts Institute of Technology (2004)

    Google Scholar 

  2. Gaborski, R.S., Vaingankar, V.S., Chaoji, V.S., Teredesai, A.M.: A System for Novelty Detection in Video Streams with Learning. Laboratory for Applied Computing, Rochester Institute of Technology, Rochester, NY, USA (2004)

    Google Scholar 

  3. Tentler, A., Vaingakar, V.S., Gaborski, R.S., Teredesai, A.M.: Event detection in video sequences of natural scenes. Rochester Institute of Technology, Laboratory for Applied Computing (2002)

    Google Scholar 

  4. Tsotsos, J.K.: Distributed Saliency Computations Solve the Feature Binding Problem. In: Proc. ECCV WAPCV, Prague (May 15, 2004)

    Google Scholar 

  5. Itti, L.: Models of Bottom-Up and Top-Down Visual Attention. Ph.D. Thesis, California Institute of Technology (2000)

    Google Scholar 

  6. Tsotsos, J.K.: Motion Understanding: Task-Directed Attention and Representations that link Perception with Action. International Journal of Computer Vision 45(3), 265–280 (2001)

    Article  MATH  Google Scholar 

  7. Rapantzikos, K., Avrithis, Y., Kollias, S.: On the use of spatiotemporal visual attention for video classification. In: VLBV 2001. Proc. of Int. Workshop on Very Low Bitrate Video Coding (2005)

    Google Scholar 

  8. Peker, K.A., Alatan, A.A., Akansu, A.N.: Low-level motion activity features for semantic characterization of video. ICME 2000 2, 801–804 (2000)

    Google Scholar 

  9. Hu, Y., Xie, X., Ma, W-Y., Chia, L-T., Rajan, D.: Salient region detection using weighted feature maps based on the human visual attention model. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3331, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Rapantzikos, K., Tsapatsoulis, N.: Enhancing the robustness of skin-based face detection schemes through a visual attention architecture. ICIP 2005 II, 1298–1301 (2005)

    Google Scholar 

  11. Makrogiannis, S.K., Bourbakis, N.G.: Motion analysis with application to assistive vision technology. In: Makrogiannis, S.K., Bourbakis, N.G. (eds.) ICTAI 2004. 16th IEEE International Conference on Tools with Artificial Intelligence, pp. 344–352 (2004)

    Google Scholar 

  12. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Lucas, B.D., Kanade, T. (eds.) International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  13. Manjunath, B.S., Ohm, J-R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Transactions On Circuits And Systems For Video Technology 11(6), 703–715 (2001)

    Article  Google Scholar 

  14. Smith, J.R., Chang, S-F.: Tools and Techniques for Color Image Retrieval. Storage and Retrieval for Image and Video Databases (SPIE) , 426–437 (1996)

    Google Scholar 

  15. Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artifical Intelligence 78(1-2), 507–547 (1995)

    Article  Google Scholar 

  16. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Guralnik, V., Srivastava, J. (eds.) KDD 1999. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, United States, pp. 33–42 (1999)

    Google Scholar 

  17. Cherkassky, V., Mulier, F.: Learning from Data. Wiley-Interscience, New York, NY, USA (1998)

    MATH  Google Scholar 

  18. Meyer, F.: An Overview of Morphological Segmentation. IJPRAI 15(7), 1089–1118 (2001)

    Google Scholar 

  19. Vanhamel, I., Pratikakis, I., Sahli, H.: Multiscale gradient watersheds of color images. IEEE Transactions on Image Processing 12(6), 617–626 (2003)

    Article  MATH  Google Scholar 

  20. O’Callaghan, R.J., Bull, D.R.: Combined morphological-spectral unsupervised image segmentation. IP 14(1), 49–62 (2005)

    Google Scholar 

  21. Marcotegui, B., Beucher, S.: Fast implementation of waterfall based on graphs. In: Ronse, C., Najman, L., Decenciere, E. (eds.) Mathematical morphology: 40 years on. Proceedings of the 7th international symposium on mathematical morphology. Computational imaging and vision, vol. 30, pp. 177–186 (2005)

    Google Scholar 

  22. Cheng, H-D., Sun, Y.: A Hierarchical approach to color image segmentation using homogeneity. IEEE Transactions on Image Processing 9(12), 2071–2082 (2000)

    Article  Google Scholar 

  23. Sun, Y., Fisher, R.: Object-based Visual Attention for Computer Vision. Artificial Intelligence , 77–123 (2003)

    Google Scholar 

  24. http://ftp.pets.rdg.ac.uk/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geerinck, T., Sahli, H. (2007). Region-Oriented Visual Attention Framework for Activity Detection. In: Paletta, L., Rome, E. (eds) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. WAPCV 2007. Lecture Notes in Computer Science(), vol 4840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77343-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77343-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77342-9

  • Online ISBN: 978-3-540-77343-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics