Skip to main content

On the Role of Dopamine in Cognitive Vision

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4840)

Abstract

Although dopamine is one of the most studied neurotransmitter in the brain, its exact function is still unclear. This short review focuses on its role in different levels of cognitive vision: visual processing, visual attention and working memory. Dopamine can influence cognitive vision either through direct modulation of visual cells or through gating of basal ganglia functioning. Even if its classically assigned role is to signal reward prediction error, we review evidence that dopamine is also involved in novelty detection and attention shifting and discuss the possible implications for computational modeling.

Keywords

  • Prefrontal Cortex
  • Basal Ganglion
  • Ventral Tegmental Area
  • Superior Colliculus
  • Visual Area

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-77343-6_23
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-77343-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nieoullon, A.: Dopamine and the regulation of cognition and attention. Prog Neurobiol. 67(1), 53–83 (2002)

    CrossRef  Google Scholar 

  2. Hurd, Y.L., Suzuki, M., Sedvall, G.C.: D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J. Chem. Neuroanat. 22(1-2), 127–137 (2001)

    CrossRef  Google Scholar 

  3. Yang, C.R., Seamans, J.K.: Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. Neurosci. 16(5), 1922–1935 (1996)

    Google Scholar 

  4. Seamans, J.K, Yang, C.R: The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74(1), 1–58 (2004)

    CrossRef  Google Scholar 

  5. Witkovsky, P.: Dopamine and retinal function. Doc. Ophthalmol. 108(1), 17–40 (2004)

    CrossRef  Google Scholar 

  6. Reader, T.A., Quesney, L.F.: Dopamine in the visual cortex of the cat. Experientia 42(11-12), 1242–1244 (1986)

    CrossRef  Google Scholar 

  7. Müller, C.P., Huston, J.P.: Dopamine activity in the occipital and temporal cortices of rats: dissociating effects of sensory but not pharmacological stimulation. Synapse 61(4), 254–258 (2007)

    CrossRef  Google Scholar 

  8. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graphs Image Proc. 37, 54–115 (1987)

    CrossRef  MATH  Google Scholar 

  9. Mogami, T., Tanaka, K.: Reward association affects neuronal responses to visual stimuli in macaque te and perirhinal cortices. J. Neurosci. 26(25), 6761–6770 (2006)

    CrossRef  Google Scholar 

  10. Rolls, E.T., Judge, S.J., Sanghera, M.K.: Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res. 130(2), 229–238 (1977)

    CrossRef  Google Scholar 

  11. Thorpe, S.J., Rolls, E.T., Maddison, S.: The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49(1), 93–115 (1983)

    CrossRef  Google Scholar 

  12. Liu, Z., Richmond, B.J, Murray, E.A, Saunders, R.C, Steenrod, S., Stubblefield, B.K, Montague, D.M, Ginns, E.I: DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proc. Natl. Acad. Sci. 101(33), 12336–12341 (2004)

    CrossRef  Google Scholar 

  13. Vitay, J., Hamker, F.H.: Sustained activities and retrieval in a computational model of perirhinal cortex. Submitted to J. Cog. Neurosci. (June 2007)

    Google Scholar 

  14. Ranganath, C., D’Esposito, M.: Directing the mind’s eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Curr. Opin. Neurobiol. 15(2), 175–182 (2005)

    CrossRef  Google Scholar 

  15. Buckley, M.J., Gaffan, D.: Perirhinal cortex ablation impairs visual object identification. J. Neurosci. 18(6), 2268–2275 (1998)

    Google Scholar 

  16. Miller, E.K., Gochin, P.M., Gross, C.G.: Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque monkey by addition of a second stimulus. Brain Res. 616, 25–29 (1993)

    CrossRef  Google Scholar 

  17. Hamker, F.H., Wiltschut, J.: Homeostatic scaling and hebbian learning in dynamic rate-coded neurons (in preparation, 2007)

    Google Scholar 

  18. Hamker, F.H: The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb Cortex 15(4), 431–447 (2005)

    CrossRef  Google Scholar 

  19. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275(5306), 1593–1599 (1997)

    CrossRef  Google Scholar 

  20. Nakamura, K., Ono, T.: Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals. J. Neurophysiol. 55(1), 163–181 (1986)

    Google Scholar 

  21. Semba, K., Fibiger, H.C.: Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J. Comp. Neurol. 323(3), 387–410 (1992)

    CrossRef  Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  23. Houk, J.C., Adams, J.L., Barto, A.G.: A model of how the basal ganglia generate and use neural signal that predict reinforcement. In: Houk, J.C., Davis, J.L., Beiser, D.G. (eds.) Models of information processing in the basal ganglia, The MIT Press, Cambridge, MA (1995)

    Google Scholar 

  24. Suri, R.E., Schultz, W.: Temporal difference model reproduces anticipatory neural activity. Neural Comput. 13(4), 841–862 (2001)

    CrossRef  MATH  Google Scholar 

  25. Daw, N.D, Touretzky, D.S: Long-term reward prediction in td models of the dopamine system. Neural Comput. 14(11), 2567–2583 (2002)

    CrossRef  MATH  Google Scholar 

  26. Kirkpatrick, K., Church, R.M.: Stimulus and temporal cues in classical conditioning. J. Exp. Psychol. Anim. Behav. Process 26(2), 206–219 (2000)

    CrossRef  Google Scholar 

  27. Brown, J., Bullock, D., Grossberg, S.: How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J. Neurosci. 19(23), 10502–10511 (1999)

    Google Scholar 

  28. O’Reilly, R.C., Frank, M.J.: Making working memory work: A computational model of learning in the frontal cortex and basal ganglia. Neur. Comput. 18, 283–328 (2006)

    CrossRef  MATH  Google Scholar 

  29. Horvitz, J.C.: Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4), 651–656 (2000)

    CrossRef  Google Scholar 

  30. Cheng, K., Saleem, K.S., Tanaka, K.: Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area te of the macaque monkey: a phaseolus vulgaris leucoagglutinin study. J. Neurosci. 17(20), 7902–7925 (1997)

    Google Scholar 

  31. Redgrave, P., Gurney, K.: The short-latency dopamine signal: a role in discovering novel actions? Nat. Rev. Neurosci. 7(12), 967–975 (2006)

    CrossRef  Google Scholar 

  32. Coizet, V., Comoli, E., Westby, G.W.M., Redgrave, P.: Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur. J. Neurosci. 17(1), 28–40 (2003)

    CrossRef  Google Scholar 

  33. Dommett, E., Coizet, V., Blaha, C.D., Martindale, J., Lefebvre, V., Walton, N., Mayhew, J.E.W., Overton, P.G., Redgrave, P.: How visual stimuli activate dopaminergic neurons at short latency. Science 307(5714), 1476–1479 (2005)

    CrossRef  Google Scholar 

  34. Oyster, C.W., Takahashi, E.S.: Responses of rabbit superior colliculus neurons to repeated visual stimuli. J. Neurophysiol. 38(2), 301–312 (1975)

    Google Scholar 

  35. Wurtz, R.H., Albano, J.E.: Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–226 (1980)

    CrossRef  Google Scholar 

  36. Ljungberg, T., Ungerstedt, U.: Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp. Neurol. 53(3), 585–600 (1976)

    CrossRef  Google Scholar 

  37. Hikosaka, O., Takikawa, Y., Kawagoe, R.: Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80(3), 953–978 (2000)

    Google Scholar 

  38. Hikosaka, O., Nakamura, K., Nakahara, H.: Basal ganglia orient eyes to reward. J. Neurophysiol. 95(2), 567–584 (2006)

    CrossRef  Google Scholar 

  39. Sommer, M.A, Wurtz, R.H: Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444(7117), 374–377 (2006)

    CrossRef  Google Scholar 

  40. Alexander, G.E., Crutcher, M.D., DeLong, M.R.: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ”prefrontal” and ”limbic” functions. Prog. Brain Res. 85, 119–146 (1990)

    CrossRef  Google Scholar 

  41. Moore, T., Fallah, M.: Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. 98(3), 1273–1276 (2001)

    CrossRef  Google Scholar 

  42. Rizzolatti, G., Riggio, L., Dascola, I., Ulmita, C.: Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychol. 25, 31–40 (1987)

    CrossRef  Google Scholar 

  43. Silkis, I.: A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing. Biosystems 89(1-3), 227–235 (2007)

    CrossRef  Google Scholar 

  44. Matsumoto, N., Minamimoto, T., Graybiel, A.M., Kimura, M.: Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85(2), 960–976 (2001)

    Google Scholar 

  45. Lange, K.W., Robbins, T.W., Marsden, C.D., James, M., Owen, A.M., Paul, G.M.: L-dopa withdrawal in parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berl) 107(2-3), 394–404 (1992)

    CrossRef  Google Scholar 

  46. Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., Matsumura, M.: Eye movements in monkeys with local dopamine depletion in the caudate nucleus. ii. deficits in voluntary saccades. J. Neurosci. 15(1 Pt 2), 928–941 (1995)

    Google Scholar 

  47. Goldman-Rakic, P.S.: Cellular basis of working memory. Neuron. 14(3), 477–485 (1995)

    CrossRef  Google Scholar 

  48. Fuster, J.M., Alexander, G.E.: Neuron activity related to short-term memory. Science 173, 652–654 (1971)

    CrossRef  Google Scholar 

  49. Alexander, G.E.: Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Exp. Brain Res. 67(3), 623–634 (1987)

    CrossRef  Google Scholar 

  50. Courtney, S.M., Ungerleider, L.G., Keil, K., Haxby, J.V.: Transient and sustained activity in a distributed neural system for human working memory. Nature 386(6625), 608–611 (1997)

    CrossRef  Google Scholar 

  51. Braver, T.S., Barch, D.M., Cohen, J.D.: Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biol. Psychiatry 46(3), 312–328 (1999)

    CrossRef  Google Scholar 

  52. Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Neurocomputational models of working memory. Nat. Neurosci. Supp. 3, 1184–1191 (2000)

    CrossRef  Google Scholar 

  53. Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J.: Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10(9), 910–923 (2000)

    CrossRef  Google Scholar 

  54. Brunel, N., Wang, X.J.: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11(1), 63–85 (2001)

    CrossRef  Google Scholar 

  55. Dreher, J.C., Guigon, E., Burnod, Y.: A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J. Cogn. Neurosci. 14(6), 853–865 (2002)

    CrossRef  Google Scholar 

  56. Frank, M.J., Loughry, B., O’Reilly, R.C.: Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect Behav. Neurosci. 1(2), 137–160 (2001)

    CrossRef  Google Scholar 

  57. Postle, B.R., D’Esposito, M.: Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fmri study. Brain Res. Cogn. Brain Res. 8(2), 107–115 (1999)

    CrossRef  Google Scholar 

  58. Lewis, S.J G, Dove, A., Robbins, T.W, Barker, R.A, Owen, A.M: Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. Eur. J. Neurosci. 19(3), 755–760 (2004)

    CrossRef  Google Scholar 

  59. Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16(7), 2397–2410 (1996)

    Google Scholar 

  60. Middleton, F.A, Strick, P.L: Basal-ganglia ’projections’ to the prefrontal cortex of the primate. Cereb Cortex 12(9), 926–935 (2002)

    CrossRef  Google Scholar 

  61. Ashby, F.G., Ell, S.W, Valentin, V.V, Casale, M.B: Frost: a distributed neurocomputational model of working memory maintenance. J. Cogn. Neurosci. 17(11), 1728–1743 (2005)

    CrossRef  Google Scholar 

  62. Gruber, A.J, Dayan, P., Gutkin, B.S, Solla, S.A: Dopamine modulation in the basal ganglia locks the gate to working memory. J. Comput. Neurosci. 20(2), 153–166 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  63. Funahashi, S., Bruce, C.J., Goldman-Rakic, P.S.: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989)

    Google Scholar 

  64. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985)

    Google Scholar 

  65. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995)

    CrossRef  Google Scholar 

  66. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 1–10 (2001)

    CrossRef  Google Scholar 

  67. Deco, G., Rolls, E.T: A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res. 44(6), 621–642 (2004)

    CrossRef  Google Scholar 

  68. Luck, S.J., Vogel, E.K.: The capacity of visual working memory for features and conjunctions. Nature 390(6657), 279–281 (1997)

    CrossRef  Google Scholar 

  69. Lee, D., Chun, M.M.: What are the units of visual short-term memory, objects or spatial locations? Percept Psychophys. 63(2), 253–257 (2001)

    MathSciNet  CrossRef  Google Scholar 

  70. Ranganath, C.: Working memory for visual objects: complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neurosci. 139(1), 277–289 (2006)

    CrossRef  Google Scholar 

  71. Supèr, H., Spekreijse, H., Lamme, V.A.: A neural correlate of working memory in the monkey primary visual cortex. Science 293(5527), 120–124 (2001)

    CrossRef  Google Scholar 

  72. Rolls, E.T.: Hippocampo-cortical and cortico-cortical backprojections. Hippocampus 10(4), 380–388 (2000)

    CrossRef  Google Scholar 

  73. Sakai, K., Rowe, J.B., Passingham, R.E.: Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat. Neurosci. 5(5), 479–484 (2002)

    Google Scholar 

  74. D’Esposito, M., Postle, B.R., Ballard, D., Lease, J.: Maintenance versus manipulation of information held in working memory: an fMRI study. Brain and Cognition 41, 66–86 (1999)

    CrossRef  Google Scholar 

  75. Parent, A., Cicchetti, F.: The current model of basal ganglia organization under scrutiny. Mov. Disord. 13(2), 199–202 (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vitay, J., Hamker, F.H. (2007). On the Role of Dopamine in Cognitive Vision. In: Paletta, L., Rome, E. (eds) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. WAPCV 2007. Lecture Notes in Computer Science(), vol 4840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77343-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77343-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77342-9

  • Online ISBN: 978-3-540-77343-6

  • eBook Packages: Computer ScienceComputer Science (R0)