Gram-positive and Gram-negative Sepsis: Two Disease Entities?

  • S. Leaver
  • A. Burke Gaffney
  • T. W. Evans
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 2008)


Sepsis and its sequelae are the leading causes of death among critically ill patients in non-coronary intensive care units (ICUs). Paradoxically, despite a fall in the mortality rate, the incidence of sepsis has increased, with about 750,000 cases annually resulting in about 215,000 deaths a year [1, 2]. This is, in part, a consequence of increased provision of intensive care facilities in the UK and elsewhere [3]. Many factors contribute to the increasing incidence of sepsis and its sequelae including improved chemotherapy for malignancies leading to greater numbers of immunosuppressed patients; more organ transplantations and cardiac surgery; and also the increased use of internal devices such as prostheses, chest drains and endotracheal tubes [3]. Moreover, 40–60 % of patients with severe sepsis develop acute lung injury (ALI) or its extreme manifestation, acute respiratory distress syndrome (ARDS), which is associated with a particularly high mortality [4, 5].


Severe Sepsis Acute Lung Injury Systemic Inflammatory Response Syndrome Acute Respiratory Distress Syndrome Invasive Pneumococcal Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554CrossRefPubMedGoogle Scholar
  2. 2.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1309CrossRefPubMedGoogle Scholar
  3. 3.
    Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time. Crit Care Med 26:2078–2086CrossRefPubMedGoogle Scholar
  4. 4.
    Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC (2005) Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med 33:1191–1198CrossRefPubMedGoogle Scholar
  5. 5.
    MacCallum NS, Evans TW (2005) Epidemiology of acute lung injury. Curr Opin Crit Care 11:43–49CrossRefPubMedGoogle Scholar
  6. 6.
    Brun-Buisson C, Doyon F, Carlet J (1996) Bacteremia and severe sepsis in adults: a multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. Am J Respir Crit Care Med 154:617–624PubMedGoogle Scholar
  7. 7.
    Geerdes HF, Ziegler D, Lode H, et al (1992) Septicemia in 980 patients at a university hospitalin Berlin: prospective studies during 4 selected years between 1979 and 1989. Clin Infect Dis 15:991–1002PubMedGoogle Scholar
  8. 8.
    Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C (2003) Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 20:402–414CrossRefPubMedGoogle Scholar
  9. 9.
    Detmer K, Wang Z, Warejcka D, Leeper-Woodford SK, Newman WH (2001) Endotoxin stimulated cytokine production in rat vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 281:H661–H668PubMedGoogle Scholar
  10. 10.
    Martich GD, Boujoukos AJ, Suffredini AF (1993) Response of man to endotoxin. Immunobiology 187:403–416PubMedGoogle Scholar
  11. 11.
    Parker SJ, Watkins PE (2001) Experimental models of gram-negative sepsis. Br J Surg 88: 22–30CrossRefPubMedGoogle Scholar
  12. 12.
    Fischer W, Mannsfeld T, Hagen G (1990) On the basic structure of poly(glycerophosphate) lipoteichoic acids. Biochem Cell Biol 68:33–43CrossRefPubMedGoogle Scholar
  13. 13.
    Ginsburg I (2002) The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae. APMIS 110:753–770CrossRefPubMedGoogle Scholar
  14. 14.
    Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94:14614–14619CrossRefPubMedGoogle Scholar
  15. 15.
    O’Neill LA (2003) Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr Opin Pharmacol 3:396–403CrossRefPubMedGoogle Scholar
  16. 16.
    O’Neill LA, Fitzgerald KA, Bowie AG (2003) The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 24:286–290CrossRefPubMedGoogle Scholar
  17. 17.
    O’Neill LA (2006) How Toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol 18:3–9CrossRefPubMedGoogle Scholar
  18. 18.
    Poltorak A, He X, Smirnova I, et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088CrossRefPubMedGoogle Scholar
  19. 19.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680CrossRefPubMedGoogle Scholar
  20. 20.
    Yamamoto M, Sato S, Mori K et al (2002) Cutting edge: a novel Toll/IL-1 receptor domaincontaining adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672PubMedGoogle Scholar
  21. 21.
    Yamamoto M, Sato S, Hemmi H, et al (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150CrossRefPubMedGoogle Scholar
  22. 22.
    Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396PubMedGoogle Scholar
  23. 23.
    Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R (2002) Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186:798–806CrossRefPubMedGoogle Scholar
  24. 24.
    Lien E, Sellati TJ, Yoshimura A, et al (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33425CrossRefPubMedGoogle Scholar
  25. 25.
    Takeuchi O, Kawai T, Muhlradt PF, et al (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940CrossRefPubMedGoogle Scholar
  26. 26.
    Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 103:565–575CrossRefPubMedGoogle Scholar
  27. 27.
    Gogos CA, Drosou E, Bassaris HP, Skoutelis A (2000) Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181:176–180CrossRefPubMedGoogle Scholar
  28. 28.
    Fisher CJ, Jr., Opal SM, Dhainaut JF, et al (1993) Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. The CB0006 Sepsis Syndrome Study Group. Crit Care Med 21:318–327CrossRefPubMedGoogle Scholar
  29. 29.
    Bjerre A, Brusletto B, Hoiby EA, Kierulf P, Brandtzaeg P (2004) Plasma interferon-gamma and interleukin-10 concentrations in systemic meningococcal disease compared with severe systemic Gram-positive septic shock. Crit Care Med 32:433–438CrossRefPubMedGoogle Scholar
  30. 30.
    Re F, Strominger JL (2001) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 276:37692–37699CrossRefPubMedGoogle Scholar
  31. 31.
    Fisher CJ Jr., Agosti JM, Opal SM, et al (1996) Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 334:1697–1702CrossRefPubMedGoogle Scholar
  32. 32.
    Cohen J, Carlet J (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 24:1431–1440CrossRefPubMedGoogle Scholar
  33. 33.
    Dhainaut JF, Tenaillon A, Le Tulzo Y, et al (1994) Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. BN 52021 Sepsis Study Group. Crit Care Med 22:1720–1728CrossRefPubMedGoogle Scholar
  34. 34.
    Fisher CJ Jr, Dhainaut JF, Opal SM, et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271:1836–1843CrossRefPubMedGoogle Scholar
  35. 35.
    The French National Registry of HA-1A (Centoxin) in septic shock (1994) A cohort study of 600 patients. The National Committee for the Evaluation of Centoxin. Arch Intern Med 154: 2484–2491CrossRefGoogle Scholar
  36. 36.
    Fein AM, Bernard GR, Criner GJ, et al (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA 277:482–487CrossRefPubMedGoogle Scholar
  37. 37.
    Bernard GR, Vincent JL, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709CrossRefPubMedGoogle Scholar
  38. 38.
    Opal SM, Garber GE, LaRosa SP, et al (2003) Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect Dis 37:50–58CrossRefPubMedGoogle Scholar
  39. 39.
    American College of Chest Physicians/Society of Critical Care Medicine (1992) Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  40. 40.
    Vincent JL (1997) Dear SIRS, I’m sorry to say that I don’t like you. Crit Care Med 25:372–374CrossRefPubMedGoogle Scholar
  41. 41.
    Levy MM, Fink MP, Marshall JC, et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538PubMedGoogle Scholar
  42. 42.
    Peters RP, van Agtmael MA, Simoons-Smit AM, Danner SA, Vandenbroucke-Grauls CM, Savelkoul PH (2006) Rapid identification of pathogens in blood cultures with a modified fluorescence in situ hybridization assay. J Clin Microbiol 44:4186–4188CrossRefPubMedGoogle Scholar
  43. 43.
    Clark MF, Baudouin SV (2006) A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32:1706–1712CrossRefPubMedGoogle Scholar
  44. 44.
    Arbour NC, Lorenz E, Schutte BC, et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191CrossRefPubMedGoogle Scholar
  45. 45.
    Kiechl S, Lorenz E, Reindl M, et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347:185–192CrossRefPubMedGoogle Scholar
  46. 46.
    Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401CrossRefPubMedGoogle Scholar
  47. 47.
    Khor CC, Chapman SJ, Vannberg FO, et al (2007) A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39:523–528CrossRefPubMedGoogle Scholar
  48. 48.
    Meng G, Rutz M, Schiemann M, et al (2004) Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J Clin Invest 113:1473–1481PubMedGoogle Scholar
  49. 49.
    Schimke J, Mathison J, Morgiewicz J, Ulevitch RJ (1998) Anti-CD14 mAb treatment provides therapeutic benefit after in vivo exposure to endotoxin. Proc Natl Acad Sci USA 95:13875–13880CrossRefPubMedGoogle Scholar
  50. 50.
    Reinhart K, Gluck T, Ligtenberg J, et al (2004) CD14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD14 monoclonal antibody (IC14). Crit Care Med 32:1100–1108CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. Leaver
    • 1
  • A. Burke Gaffney
    • 1
  • T. W. Evans
    • 1
  1. 1.Department of Critical CareRoyal Brompton HospitalLondonUK

Personalised recommendations