Skip to main content

Hilbertian Fields

  • Chapter
Field Arithmetic

David Hilbert proved his celebrated irreducibility theorem during his attempt to solve a central problem of Galois theory: Is every finite group realizable over ℚ? He proved that a general specialization of the coeficients of the general polynomial of degree n to elements of ℚ gives a polynomial whose Galois group is S n . Further, if f∈ℚ[T1,…,T r ,X] is an irreducible polynomial, then there exist a1,…,a r Q such that f(a,X) remains irreducible. This result is now known as Hilbert’s irreducibility theorem. Since then, many more finite groups have been realized over ℚ. Most of those have been realized via Hilbert’s theorem. This has brought the theorem to the center of the theory of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Hilbertian Fields. In: Field Arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77270-5_12

Download citation

Publish with us

Policies and ethics