Multiple Classifier Fusion Using k-Nearest Localized Templates

  • Jun-Ki Min
  • Sung-Bae Cho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4881)


This paper presents a method for combining classifiers that uses k-nearest localized templates. The localized templates are estimated from a training set using C-means clustering algorithm, and matched to the decision profile of a new incoming sample by a similarity measure. The sample is assigned to the class which is most frequently represented among the k most similar templates. The appropriate value of k is determined according to the characteristics of the given data set. Experimental results on real and artificial data sets show that the proposed method performs better than the conventional fusion methods.


Classifier fusion Decision templates C-means clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cho, S.-B., Kim, J.-H.: Multiple Network Fusion using Fuzzy Logic. IEEE Trans. Neural Networks 6(2), 497–501 (1995)CrossRefGoogle Scholar
  2. 2.
    Cho, S.-B.: Pattern Recognition with Neural Networks Combined by Genetic Algorithm. Fuzzy Sets and Systems. 103(2), 339–347 (1999)CrossRefGoogle Scholar
  3. 3.
    Hansen, L., Salamon, P.: Neural Network Ensembles. IEEE Trans. Pattern Analysis and Machine Intelligence. 12, 993–1001 (1990)CrossRefGoogle Scholar
  4. 4.
    Wanas, N.M., Dara, R.A., Kamel, M.S.: Adaptive Fusion and Co-operative Training for Classifier Ensembles. Pattern Recognition 39(9), 1781–1794 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. J. Artificial Intelligence Research. 11, 169–198 (1999)zbMATHGoogle Scholar
  6. 6.
    Alkoot, F.M., Kittler, J.: Experimental Evaluation of Expert Fusion Strategies. Pattern Recognition Letters 20, 1361–1369 (1999)CrossRefGoogle Scholar
  7. 7.
    Kuncheva, L.I.: A Theoretical Study on Six Classifier Fusion Strategies. IEEE Trans. Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)CrossRefGoogle Scholar
  8. 8.
    Lam, L., Suen, C.Y.: Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance. IEEE Trans. Systems, Man, and Cybernetics 27(5), 553–568 (1997)CrossRefGoogle Scholar
  9. 9.
    Kittler, J.: Combining Classifiers: A Theoretical Framework. Pattern Analysis and Applications 1(1), 18–27 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kittler, J., Alkoot, F.M.: Sum versus Vote Fusion in Multiple Classifier Systems. IEEE Trans. Pattern Analysis and Machine Intelligence 25(1), 110–115 (2003)CrossRefGoogle Scholar
  11. 11.
    Huang, Y.S., Suen, C.Y.: A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals. IEEE Trans. Pattern Analysis and Machine Intelligence 17(1), 90–94 (1995)CrossRefGoogle Scholar
  12. 12.
    Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision Templates for Multiple Classifier Fusion: An Experimental Comparison. Pattern Recognition 34(2), 299–314 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kuncheva, L.I.: Switching between Selection and Fusion in Combining Classifiers: An Experiment. IEEE Trans. Systems, Man, and Cybernetics 32(2), 146–156 (2002)CrossRefGoogle Scholar
  14. 14.
    Min, J.-K., Hong, J.-H., Cho, S.-B.: Effective Fingerprint Classification by Localized Models of Support Vector Machines. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp. 287–293. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  16. 16.
    Kuncheva, L.I.: Using Measures of Similarity and Inclusion for Multiple Classifier Fusion by Decision Templates. Fuzzy Sets and Systems 122(3), 401–407 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Trans. Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jun-Ki Min
    • 1
  • Sung-Bae Cho
    • 1
  1. 1.Department of Computer Science, Yonsei University, Biometrics Engineering Research Center, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749Korea

Personalised recommendations