Preference Learning from Interval Pairwise Data. A Distance-Based Approach

  • Esther Dopazo
  • Mauricio Ruiz-Tagle
  • Juan Robles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4881)


Preference learning has recently received a lot of attention within the machine learning field, concretely learning by pairwise comparisons is a well-established technique in this field. We focus on the problem of learning the overall preference weights of a set of alternatives from the (possibly conflicting) uncertain and imprecise information given by a group of experts into the form of interval pairwise comparison matrices. Because of the complexity of real world problems, incomplete information or knowledge and different patterns of the experts, interval data provide a flexible framework to account uncertainty and imprecision. In this context, we propose a two-stage method in a distance-based framework, where the impact of the data certainty degree is captured. First, it is obtained the group preference matrix that best reflects imprecise information given by the experts. Then, the crisp preference weights and the associated ranking of the alternatives are derived from the obtained group matrix. The proposed methodology is made operational by using an Interval Goal Programming formulation.


Preference learning pairwise comparison matrices interval data distance methods interval goal programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doyle, J.: Prospects for preferences. Computational Intelligence 20(2), 111–136 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Arbel, A., Vargas, L.: Preference simulation and preference programming: Robustness issues in priority derivation. European Journal of Operational Research 69(2), 200–209 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Salo, A.A., Hämäläinen, R.P.: Preference programming through approximate ratio comparisons. European Journal of Operational Research 82, 458–475 (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Wang, Y.-M., Yang, J.-B., Xu, D.-L.: Interval weight generation approaches based on consistency test and interval comparison matrices. Applied Mathematics and Computation 167(1), 252–273 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Islam, R., Biswal, M.P., Alam, S.S.: Preference programming and inconsistent interval judgments. European Journal of Operational Research 97(1), 53–62 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Wang, Y.-M., Yang, J.-B., Xu, D.-L.: A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets and Systems 152, 475–498 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boender, C.G.E., de Graan, J.G., Lootsma, F.A.: Multicriteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets and Systems 29(2), 133–143 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Yu, C.-S.: A GP-AHP method for solving group decision-making fuzzy AHP problems. Computers and Operations Research 29, 1969–2001 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Mikhailov, L.: Group prioritization in the AHP by fuzzy preference programming method. Computers and Operations Research 31(2), 293–301 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bryson, N.K.M., Joseph, A.: Generating consensus priority interval vectors for group decision-making in the AHP. Journal of Multi-Criteria Decision Analysis 9(4), 127–137 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    González-Pachón, J., Romero, C.: Aggregation of partial ordinal rankings: an interval goal programming approach. Computers and Operations Research 28(8), 827–834 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Ignizio, J.: Linear programming in single -& multiple- objective systems. Prentice-Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  14. 14.
    Saaty, T.: The analytic hierarchy process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Jones, D.F., Mardle, S.J.: A distance-metric methodology for the derivation of weights from a pairwise comparison matrix. Journal of the Operational Research Society 55, 869–875 (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Dopazo, E., González-Pachón, J.: Consistency-driven approximation of a pairwise comparison matrix. Kybernetyca 39(5), 561–568 (2003)Google Scholar
  17. 17.
    Dopazo, E., Ruiz-Tagle, M.: A GP formulation for aggregating preferences with interval assessments. In: 7th International Conference on Multiobjective Programming and Goal Programming (submitted, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Esther Dopazo
    • 1
  • Mauricio Ruiz-Tagle
    • 2
  • Juan Robles
    • 1
  1. 1.Facultad de Informática, Technical University of Madrid, Campus de Montegancedo, CP28660, Boadilla del Monte (Madrid)Spain
  2. 2.Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, General Lagos 2086, Campus Miraflores, ValdiviaChile

Personalised recommendations