Minimal BSDT Abstract Selectional Machines and Their Selectional and Computational Performance

  • Petro Gopych
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4881)


Turing machine (TM) theory constitutes the theoretical basis for contemporary digital (von Neumann) computers. But it is problematic whether it could be an adequate theory of brain functions (computations) because, as it is widely accepted, the brain is a selectional device with blurred bounds between the areas responsible for data processing, control, and behavior. In this paper, by analogy with TMs, the optimal decoding algorithm of recent binary signal detection theory (BSDT) is presented in the form of a minimal one-dimensional abstract selectional machine (ASM). The ASM’s hypercomplexity is explicitly hypothesized, its optimal selectional and super-Turing computational performance is discussed. BSDT ASMs can contribute to a mathematically strict and biologically plausible theory of functional properties of the brain, mind/brain relations and super-Turing machines mimicking partially some cognitive abilities in animals and humans.


neural networks Turing machine brain memory consciousness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turing, A.M.: On Computable Numbers with an Application to the Entscheidungs-problem. Proceed. London Math. Soc. 42, 230–265 (1936-1937)Google Scholar
  2. 2.
    Deutsch, D.: Quantum theory, the Church-Turing Principle and the Universal Quantum Computer. Proceed. Roy. Soc. London A 400, 96–117 (2005)Google Scholar
  3. 3.
    Searl, J.R.: Minds, Brains, and Programs. Behav. Brain Sci. 3, 417–457 (1980)CrossRefGoogle Scholar
  4. 4.
    Penrose, R.: Shadows of Mind. Oxford University Press, Oxford, England (1994)Google Scholar
  5. 5.
    Copeland, B.B.J.: Beyond the Universal Turing Machine. Australasian J. Philosophy 77, 46–66 (1999)CrossRefGoogle Scholar
  6. 6.
    Edelman, G.M.: Naturalizing Consciousness: A Theoretical Framework. Proceed. Natl. Acad. Sci. 100, 5520–5524 (2003)CrossRefGoogle Scholar
  7. 7.
    Brent, R., Bruck, J.: Can Computers Help to Explain Biology? Nature 440, 416–417 (2006)CrossRefGoogle Scholar
  8. 8.
    Butcher, L.M., Kennedy, J.K.J., Plomin, R.: Generalist Genes and Cognitive Neuroscience. Curr. Opin. Neurobiol. 16, 145–151 (2006)CrossRefGoogle Scholar
  9. 9.
    Siegelmannn, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhauser, Boston-Basel-Berlin (1999)Google Scholar
  10. 10.
    O’Reilly, R.C.: Biologically Based Computational Models of High-Level Cognition. Science 314, 91–94 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mander, E., Goaillard, J.-M.: Variability, Compensation, and Homeostasis in Neuron and Network Function. Nature Rev. Neurosci. 7, 563–574 (2006)CrossRefGoogle Scholar
  12. 12.
    Gopych, P.M.: ROC Curves within the Framework of Neural Network Assembly Memory Model: Some Analytic Results. Int. J. Inf. Theo. Appl. 10, 189–197 (2003)Google Scholar
  13. 13.
    Gopych, P.M.: Sensitivity and Bias within the Binary Signal Detection Theory, BSDT. Int. J. Inf. Theo. Appl. 11, 318–328 (2004)Google Scholar
  14. 14.
    Gopych, P.M.: Neural Network Computations with Negative Triggering Thresholds. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 223–228. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Gopych, P.M.: Generalization by Computation through Memory. Int. J. Inf. Theo. Appl. 13, 145–157 (2006)Google Scholar
  16. 16.
    Gopych, P.M.: Performance of BSDT Decoding Algorithms Based on Locally Damaged Neural Networks. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 199–206. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gopych, P.M.: Foundations of the Neural Network Assembly Memory Model. In: Shannon, S. (ed.) Leading-Edge Computer Sciences, pp. 21–84. Nova Sci., New York (2006)Google Scholar
  18. 18.
    Dayan, P., Hinton, P.E., Neal, R.M., Zemel, R.: The Helmholtz Machine. Neural Computations 7, 889–904 (1995)CrossRefGoogle Scholar
  19. 19.
    Gopych, P.M.: Identification of Peaks in Line Spectra Using the Algorithm Imitating the Neural Network Operation. Instr. Experim. Techn. 41, 341–346 (1998)Google Scholar
  20. 20.
    Mayfield, J.E.: Minimal History, a Theory of Plausible Explanation. Complexity 12, 48–53 (2007)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The Role of Fixational Eye Movements in Visual Perception. Nature Rev. Neurosci. 5, 229–240 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Petro Gopych
    • 1
  1. 1.Universal Power Systems USA-Ukraine LLC, 3 Kotsarskaya st., Kharkiv 61012Ukraine

Personalised recommendations