Advertisement

FPGA-Based Architecture for Computing Testors

  • Alejandro Rojas
  • René Cumplido
  • J. Ariel Carrasco-Ochoa
  • Claudia Feregrino
  • J. Francisco Martínez-Trinidad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4881)

Abstract

Irreducible testors (also named typical testors) are a useful tool for feature selection in supervised classification problems with mixed incomplete data. However, the complexity of computing all irreducible testors of a training matrix has an exponential growth with respect to the number of columns in the matrix. For this reason different approaches like heuristic algorithms, parallel and distributed processing, have been developed. In this paper, we present the design and implementation of a custom architecture for BT algorithm, which allows computing testors from a given input matrix. The architectural design is based on a parallel approach that is suitable for high populated input matrixes. The architecture has been designed to deal with parallel processing of all matrix rows, automatic candidate generation, and can be configured for any size of matrix. The architecture is able to evaluate whether a feature subset is a testor of the matrix and to calculate the next candidate to be evaluated, in a single clock cycle. The architecture has been implemented on a Field Programmable Gate Array (FPGA) device. Results show that it provides significant performance improvements over a previously reported hardware implementation. Implementation results are presented and discussed.

Keywords

Feature Selection Testor Theory Hardware Architecture FPGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cumplido, R., Carrasco-Ochoa, A., Feregrino, C.: On the Design and Implementation of a High Performance Configurable Architecture for Testor Identification. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 665–673. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Dmitriev, A.N., Zhuravlev, Y.I., Krendeliev, F.P.: About Mathematical Principles of Objects and Phenomena Classification. Diskretni Analiz 7, 3–15 (1966) (in Russian)Google Scholar
  3. 3.
    Martínez-Trinidad, J.F., Guzmán-Arenas, A.: The Logical Combinatorial Approach to Pattern Recognition an Overview through Selected Works. Pattern Recognition 34(4), 741–751 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An Overview of the Evolution of the Concept of Testor. Pattern Recognition 34(4), 753–762 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Sánchez Díaz, G., Lazo Cortés, M.: Modifying BT Algorithm for Improving its Runtimes. Revista Ciencias Matemáticas 20(2), 129–136 (2002) (in Spanish)Google Scholar
  6. 6.
    Virtex-II Pro Data sheet, www.xilinx.com
  7. 7.
    XtremeDSP Development Kit for Virtex-II Pro, www.xilinx.com
  8. 8.
    Gomez, M.: Hardware-in-the-Loop Simulation. Embedded Systems Programming 14(13) (2001)Google Scholar
  9. 9.
    Bravo Martinez, A.: Algorithm CT for Calculating the Typical Testors of k-valued Matrix. Revista Ciencias Matematicas 4(2), 123–144 (1983) (in Spanish)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: A New Algorithm for Computing Typical Testors. Revista Ciencias Matemáticas 21(1), 85–95 (2003) (in Spanish)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alejandro Rojas
    • 1
  • René Cumplido
    • 1
  • J. Ariel Carrasco-Ochoa
    • 1
  • Claudia Feregrino
    • 1
  • J. Francisco Martínez-Trinidad
    • 1
  1. 1.Computer Science Department, INAOE, Apdo. Postal 51 &216, Tonantzintla, PueblaMéxico

Personalised recommendations