Advertisement

Asynchronous BCI Control of a Robot Simulator with Supervised Online Training

  • Chun Sing Louis Tsui
  • John Q. Gan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4881)

Abstract

Due to the non-stationarity of EEG signals, online training and adaptation is essential to EEG based brain-computer interface (BCI) systems. Asynchronous BCI offers more natural human-machine interaction, but it is a great challenge to train and adapt an asynchronous BCI online because the user’s control intention and timing are usually unknown. This paper proposes a novel motor imagery based asynchronous BCI for controlling a simulated robot in a specifically designed environment which is able to provide user’s control intention and timing during online experiments, so that online training and adaptation of motor imagery based asynchronous BCI can be effectively investigated. This paper also proposes an online training method, attempting to automate the process of finding the optimal parameter values of the BCI system to deal with non-stationary EEG signals. Experimental results have shown that the proposed methodfor online training of asynchronous BCI significantly improves the performance.

Keywords

Adaptation asynchronous BCI brain-computer interface online training automated learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interfaces for Communication and Control. Clinical Neurophysiology. 113, 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., Flor, H.: A Spelling Device for the Paralyzed. Nature 398, 297–298 (1999)CrossRefGoogle Scholar
  3. 3.
    Pfurtscheller, G., Neuper, C.: Motor Imagery and Direct Brain-Computer Communication. Proc. IEEE 89, 1123–1134 (2001)CrossRefGoogle Scholar
  4. 4.
    Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG Classification during Motor Imagery - Simulation of an Asynchronous BCI. IEEE Trans. on Neural Syst. & Rehab. Eng. 12(2), 258–265 (2004)CrossRefGoogle Scholar
  5. 5.
    Birch, G.E., Bozorgzadeh, Z., Mason, S.G.: Initial On-Line Evaluations of the LF-ASD Brain-Computer Interface with Able-Bodied and Spinal-Cord Subjects Using Imagined Voluntary Motor Potentials. IEEE Trans. Neural Syst. & Rehab. Eng. 10(4), 219–224 (2002)CrossRefGoogle Scholar
  6. 6.
    Millán, J.d.R., Mouriño, J.: Asynchronous BCI and Local Neural Classifiers: An Overview of the Adaptive Brain Interface Project. IEEE Trans. on Neural Syst. & Rehab. Eng. 11(2), 159–161 (2003)CrossRefGoogle Scholar
  7. 7.
    Roberts, S., Penny, W.: Real-Time Brain Computer Interfacing: A Preliminary Study Using Bayesian Learning. Medical & Biological Engineering and Computing 38(1), 56–61 (2000)CrossRefGoogle Scholar
  8. 8.
    Mason, S.G., Birch, G.E.: A Brain-Controlled Switch for Asynchronous Control Applications. IEEE Trans. on Biomedical Engineering 47(10), 1297–1307 (2000)CrossRefGoogle Scholar
  9. 9.
    Krauledat, M., Dornhege, G., Blankertz, B., Curio, G., Müller, K.-R.: The Berlin Brain-Computer Interface for Rapid Response. Biomed. Tech. 49(1), 61–62 (2004)Google Scholar
  10. 10.
    Sun, S., Zhang, C.: Adaptive Feature Extraction for EEG Signal Classification. Medical and Biological Engineering and Computing 44(10), 931–935 (2006)CrossRefGoogle Scholar
  11. 11.
    Tomioka, R., Dornhege, G., Aihara, K., Müller, K.-R.: An Iterative Algorithm for Spatio-Temporal Filter Optimization. In: 3rd International Workshop on Brain-Computer Interfaces, Graz, pp. 22–23 (2006)Google Scholar
  12. 12.
    Grosse-Wentrup, M., Gramann, K., Buss, M.: Adaptive Spatial Filters with Predefined Region of Interest for EEG Based Brain-Computer Interfaces. In: Schoelkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems 19 (NIPS), MIT Press, Cambridge, MA (2007)Google Scholar
  13. 13.
    Farquhar, J.: Learning Optimal EEG Features Across Time, Frequency and Space. In: Schoelkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems 19 (NIPS), MIT Press, Cambridge, MA (2007)Google Scholar
  14. 14.
    Millán, J.d.R.: On the Need for On-Line Learning in Brain-Computer Interfaces. In: IJCNN. International Joint Conference on Neural Networks, Budapest, pp. 2877–2882 (2004)Google Scholar
  15. 15.
    Buttfield, A., Ferrez, P.W., Millán, J.d.R.: Towards a Robust BCI: Error Potentials and Online Learning. IEEE Trans. on Neural Syst. & Rehab. Eng. 14(2), 164–168 (2006)CrossRefGoogle Scholar
  16. 16.
    Sykacek, P., Roberts, S., Stokes, M.: Adaptive BCI Based on Variational Bayesian Kalman Filtering: An Empirical Evaluation. IEEE Trans. on Biomedical Engineering 51(5), 719–729 (2004)CrossRefGoogle Scholar
  17. 17.
    Vidaurre, C., Schlögl, A., Cabeza, R., Scherer, R., Pfurtscheller, G.: Study of On-Line Adaptive Discriminant Analysis for EEG-Based Brain Computer Interfaces. IEEE Trans. on Biomedical Engineering 54(3), 550–556 (2007)CrossRefGoogle Scholar
  18. 18.
    Blankertz, B., Müller, K.-R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlögl, A., Pfurtscheller, G., Millán, J.d.R., Schröder, M., Birbaumer, N.: The BCI Competition III: Validating Alternative Apporaches to Actual BCI Problems. IEEE Trans. on Neural Syst. & Rehab. Eng. 14(2), 153–159 (2006)CrossRefGoogle Scholar
  19. 19.
    Kanoh, S., Scherer, R., Yoshinobu, T., Hoshimiya, N., Pfurtscheller, G.: Brain Switch” BCI System Based on EEG During Foot Movement Imagery. In: 3rd International Workshop on Brain-Computer Interfaces, Graz, pp. 64–65 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Chun Sing Louis Tsui
    • 1
  • John Q. Gan
    • 1
  1. 1.BCI Group, Department of Computer Science, University of Essex, Colchester, CO4 3SQUnited Kingdom

Personalised recommendations