Skip to main content

Parallel Adaptive Simulation of PEM Fuel Cells

  • Chapter
Mathematics – Key Technology for the Future

Abstract

Polymer electrolyte membrane (PEM) fuel cells are currently being developed for production of electricity in stationary and portable applications. They benefit from pollution free operation and a potential for high energy conversion efficiency. As PEM fuel cells are currently operated within low temperature and pressure ranges, water management is one of the critical issues in performance optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALUGrid. http://www.mathematik.uni-freiburg.de/IAM/Research/alugrid/.

    Google Scholar 

  2. DUNE. http://www.dune-project.org.

    Google Scholar 

  3. DUNE-Fem. http://www.mathematik.uni-freiburg.de/IAM/Research/projectskr/ dune/feminfo.html.

    Google Scholar 

  4. D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Num. Anal, 39:1749–1779, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bastian and M. Blatt. The Iterative Template Solver Library. In Proc. of the Workshop on State-of-the-Art in Scientific and Parallel Computing, PARA ’06. Springer, 2006.

    Google Scholar 

  6. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE. Preprint 404, DFG Research Center MATHEON, 2007.

    Google Scholar 

  7. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework. Preprint 403, DFG Research Center MATHEON, 2007.

    Google Scholar 

  8. P. Bastian and B. Riviere. Discontinuous galerkin methods for two-phase flow in porous media. Technical Report 28, IWR (SFB 359), Universität Heidelberg, 2004.

    Google Scholar 

  9. A. Burri, A. Dedner, D. Diehl, R. Klöfkorn, and M. Ohlberger. A general object oriented framework for discretizing nonlinear evolution equations. In Proc. of The 1st Kazakh-German Advanced Research Workshop on Computational Science and High Performance Computing, 2005.

    Google Scholar 

  10. B. Cockburn and C.-W. Shu. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM J. Numer. Anal., 35(6):2440–2463, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.Y. Corapcioglu and A. Baehr. A compositional multiphase model for groundwater contamination by petroleum products: 1. theoretical considerations. Water Resource Research, 1987.

    Google Scholar 

  12. A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg. A parallel, load balanced mhd code on locally adapted, unstructured grids in 3d. Computing and Visualization in Science, 7:79–96, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Diehl. Higher Order Schemes for Simulation of Compressible Liquid – Vapor Flows with Phase Change. Dissertation, Institute of Mathematics, University Freiburg, 2007.

    Google Scholar 

  14. R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A contribution to the modeling of hydrosystems. Springer, Berlin, Heidelberg, 1997.

    Google Scholar 

  15. M. Ohlberger and C. Rohde. Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems. IMA J. Numer. Anal., 22(2):253–280, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Steinkamp, J. Schumacher, F. Goldsmith, M. Ohlberger, and C. Ziegler. A non-isothermal pem fuel cell model including two water transport mechanisms in the membrane. Preprint 4, Mathematisches Institut, Universität Freiburg, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klöfkorn, R., Kröner, D., Ohlberger, M. (2008). Parallel Adaptive Simulation of PEM Fuel Cells . In: Krebs, HJ., Jäger, W. (eds) Mathematics – Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77203-3_16

Download citation

Publish with us

Policies and ethics