Design of a Medical Image Database with Content-Based Retrieval Capabilities

  • Juan C. Caicedo
  • Fabio A. González
  • Edwin Triana
  • Eduardo Romero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


This paper presents the architecture of an image administration system that supports the medical practice in tasks such as teaching, diagnosis and telemedicine. The proposed system has a multi-tier, web-based architecture and supports content-based retrieval. The paper discusses the design aspects of the system as well as the proposed content-based retrieval approach. The system was tested with real pathology images to evaluate its performance, reaching a precision rate of 67%. The detailed results are presented and discussed.


content-based image retrieval medical imaging image databases 


  1. 1.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content based image retrieval systems in medical applications clinical bene ts and future directions. International Journal of Medical Informatics 73, 1–23 (2004)CrossRefGoogle Scholar
  2. 2.
    Costa, C.M., Silva, A., Oliveira, J.L., Ribeiro, V.G., Ribeiro, J.: A demanding web-based pacs supported by web services technology. SPIE Medical Imaging 6145 (2006)Google Scholar
  3. 3.
    Gutierrez, M., Santos, C., Moreno, R., Kobayashi, L., Furuie, S., Floriano, D., Oliveira, C., João, M., Gismondi, R.: Implementation of a fault-tolerant pacs over a grid architecture. SPIE Medical Imaging - Poster Session 6145 (2006)Google Scholar
  4. 4.
    Chadrashekar, N., Gautham, S.M., Srinivas, K.S., Vijayananda, J.: Design considerations for a reusable medical database. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 69–74 (2006)Google Scholar
  5. 5.
    Marcos, E., Acuña, C., Vela, B., Cavero, J., Hernández, J.: A database for medical image management. Computer Methods and Programs in Biomedicine 86, 255–269 (2007)CrossRefGoogle Scholar
  6. 6.
    Caramella, D.: Is pacs research and development still necessary? International Congress Series 1281, 11–14 (2005)CrossRefGoogle Scholar
  7. 7.
    Doi, K.: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics 31, 198–211 (2007)CrossRefGoogle Scholar
  8. 8.
    Shyu, C.-R., Brodley, C.E., Kak, A.C., Kosaka, A., Aisen, A.M., Broderick, L.S.: Assert: A physician-in-the-loop content-based retrieval system for hrct image databases. Computer Vision and Image Understanding 75, 111–132 (1999)CrossRefGoogle Scholar
  9. 9.
    Lehmann, T.M., Güld, M.O., Thies, C., Plodowski, B., Keysers, D., Ott, B., Schubert, H.: The irma project: A state of the art report on content-based image retrieval in medical applications. Korea-Germany Workshop on Advanced Medical Image, 161–171 (2003)Google Scholar
  10. 10.
    Deselaers, T., Weyand, T., Keysers, D., Macherey, W., Ney, H.: Fire in imageclef 2005: Combining content-based image retrieval with textual information retrieval. Image Cross Language Evaluation Forum  (2005)Google Scholar
  11. 11.
    Traina, A.J., Castanon Jr., C.A., C.T.: Multiwavemed: A system for medical image retrieval through wavelets transformations. In: 16th IEEE Symposium on Computer-Based Medical Systems (2003)Google Scholar
  12. 12.
    Tan, Y., Zhang, J., Hua, Y., Zhang, G., Huang, H.: Content-based image retrieval in picture archiving and communication systems. SPIE Medical Imaging - Posters 6145 (2006)Google Scholar
  13. 13.
    Müller, H., Hoang, P.A.D., Depeursinge, A., Hoffmeyer, P., Stern, R., Lovis, C., Geissbuhler, A.: Content-based image retrieval from a database of fracture images. SPIE Medical Imaging 6516 (2007)Google Scholar
  14. 14.
    Lozano, C.C., Kusmanto, D., Chutatape, O.: Web-based design for medical image. In: IEEE International Conference on Control, Automation, Robotics and Vision 3, pp. 1700 – 1705 (2002)Google Scholar
  15. 15.
    Petrakis, E.G.M., Faloutsos, C.: Similarity searching in medical image databases. IEEE Transactions on Knowledge and Data Engineering 9, 435–447 (1997)CrossRefGoogle Scholar
  16. 16.
    Nikson, M.S., Aguado, A.S.: Feature Extraction and Image Processing. Elsevier, Amsterdam (2002)Google Scholar
  17. 17.
    Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40, 262–282 (2007)zbMATHCrossRefGoogle Scholar
  18. 18.
    Deselaers, T.: Features for Image Retrieval. PhD thesis, RWTH Aachen University. Aachen, Germany (2003)Google Scholar
  19. 19.
    Siggelkow, S.: Feature Histograms for Content-Based Image Retrieval. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2002)Google Scholar
  20. 20.
    Ashmore, D.C.: The J2EE architect’s handbook. DVT Press (2004)Google Scholar
  21. 21.
    Yates, R.B., del Solar, J.R., Verschae, R., Castillo, C., Hurtado, C.: Content-based image retrieval and characterization on specific web collections. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 189–198. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Müller, H., Rosset, A., Vallee, J.P., Geissbuhler, A.: Comparing features sets for content-based image retrieval in a medical-case database. Medical Imaging 5371, 99–109 (2004)Google Scholar
  23. 23.
    Müller, H., Müller, W., Marchand-Maillet, S., Squire, D.M., Pun, T.: A Framework for Benchmarking in Visual Information Retrieval. International Journal on Multimedia Tools and Applications 22, 55–73 (2003) (Special Issue on Multimedia Information Retrieval)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Juan C. Caicedo
    • 1
  • Fabio A. González
    • 1
  • Edwin Triana
    • 1
  • Eduardo Romero
    • 1
  1. 1.Bioingenium Research Group, Universidad Nacional de Colombia 

Personalised recommendations