Hardware Implementation of Image Recognition System Based on Morphological Associative Memories and Discrete Wavelet Transform

  • Enrique Guzmán
  • Selene Alvarado
  • Oleksiy Pogrebnyak
  • Luis Pastor Sánchez Fernández
  • Cornelio Yañez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


The implementation of a specific image recognition technique for an artificial vision system is presented. The proposed algorithm involves two steps. First, smaller images are obtained using Discrete Wavelet Transform (DWT) after four stages of decomposition and taking only the approximations. This way the volume of information to process is reduced considerably and the system memory requirements are reduced as well. Another purpose of DWT is to filter noise that could be induced in the images. Second, the Morphological Associative Memories (MAM) are used to recognize landmarks. The proposed algorithm provides flexibility, possibility to parallelize algorithms and high overall performance of hardware implemented image retrieval system. The resulted hardware implementation has low memory requirements, needs in limited arithmetical precision and reduced number of simple operations. These benefits are guaranteed due to the simplicity of MAM learning/restoration process that uses simple morphological operations, dilation and erosion, in other words, MAM calculate maximums or minimums of sums. These features turn out the artificial vision system to be robust and optimal for the use in realtime autonomous systems. The proposed image recognition system has, among others, the following useful features: robustness to the noise induced in the patter to process, high processing speed, and it can be easily adapted to diverse operation circumstances.


Artificial Vision Image Recognition Morphological Associative Memories Discrete Wavelet Transform Hardware Implementation 


  1. 1.
    Wang, L., Der, S.Z., Nasrabadi, N.M.: Automatic Target Recognition Using a Feature-Decomposition and Data-Decomposition Modular Neural Network. IEEE Transactions on Image Processing 7(8), 1113–1121 (1998)CrossRefGoogle Scholar
  2. 2.
    Sim, D.-G, Kwon, O.-K., Park, R.-H.: Object Matching Algorithms Using Robust Hausdorff Distance Measures. IEEE Transactions on Image Processing 8(3), 425–429 (1999)CrossRefGoogle Scholar
  3. 3.
    Young, S.S., Scott, P.D.: Object Recognition Using Multilayer Hopfield Neural Network. IEEE Transactions on Image Processing 6(3), 357–372 (1997)CrossRefGoogle Scholar
  4. 4.
    Young, S.S., Scott, P.D., Bandera, C.: Foveal Automatic Target Recognition Using a Multiresolution Neural Network. IEEE Transations on Image Processing 7(8), 1122–1135 (1998)CrossRefGoogle Scholar
  5. 5.
    Barcala, J.M., Alberdi, J., Navarrete, J.J., Oller, J.C.: Clasificación Automática de Envases Plásticos. XX Jornadas de Automática, Comite Español de Automática, España (1999)Google Scholar
  6. 6.
    Foltyniewicz, R.: Automatic face recognition via wavelets and mathematical morphology. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 2, pp. 13–17 (1996)Google Scholar
  7. 7.
    Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences of the USA 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ritter, G.X., Sussner, P., Díaz de León, J.L.: Morphological Associative Memories. IEEE Transactions on Neural Networks 9(2), 281–293 (1998)CrossRefGoogle Scholar
  9. 9.
    Yáñes, C., de León, J.L.D.: Memorias Morfológicas Heteroasociativas. Centro de Investigación en Computación, IPN, México, IT. Serie Verde 57 (2001) (ISBN 970-18-6697-5)Google Scholar
  10. 10.
    Yáñes, C., de León, J.L.D.: Memorias Morfológicas Autoasociativas. Centro de Investigación en Computación, IPN, México, IT 58, Serie Verde  (2001) (ISBN 970-18-6698-3)Google Scholar
  11. 11.
    Guzman, E., Pogrebnyak, O., Yáñez, C., Moreno, J.A.: Image Compression Algorithm Based on Morphological Associative Memories. In: CIARP 2006. LNCS, vol. 4225, pp. 519–528. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Ritter, G.X., Ritter, G.X., de León, J.L.D., Sussner, P.: Morphological Bidirectional Associative Memories. Neural Networks 12(6), 851–867 (1999)CrossRefGoogle Scholar
  13. 13.
    Castellanos, C.: Díaz De León, J.L., Sánchez, A.: Análisis Experimental con las Memorias Asociativas Morfológicas. XXI Congreso Internacional de Ingeniería Electrónica, Electro 1999, México, pp. 11-16 (1999)Google Scholar
  14. 14.
    Pardo, F., Boluda, J.A.: VHDL: lenguaje para síntesis y modelado de circuitos, 2nd Edition. Editorial RA-MA, España (2004) (ISBN 84-7897-595-0)Google Scholar
  15. 15.
    Acharya, T., Tsai, P.-S.: JPEG2000 Standard for Image Compression. John Wiley & Sons, Chichester (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Enrique Guzmán
    • 1
  • Selene Alvarado
    • 1
  • Oleksiy Pogrebnyak
    • 2
  • Luis Pastor Sánchez Fernández
    • 2
  • Cornelio Yañez
    • 2
  1. 1.Universidad Tecnológica de la Mixteca 
  2. 2.Centro de Investigación en Computación del Instituto Politécnico Nacional 

Personalised recommendations