Advertisement

A Radial Basis Function for Registration of Local Features in Images

  • Asif Masood
  • Adil Masood Siddiqui
  • Muhammad Saleem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)

Abstract

Image registration based on landmarks and radial basis functions (e.g. thin plate splines) results in global changes and deformation spreads over the entire resampled image. This paper presents a radial basis function for registration of local changes. The proposed research was based on study/analysis of profile for different radial basis functions, supporting local changes. The proposed function was designed to overcome the weaknesses, observed in other radial basis functions. The results are analyzed/compared on the basis of different properties and parameters discussed in this paper. Experimental results show that the proposed function improves the registration accuracy.

Keywords

Radial basis function Image registration Compact support Landmarks 

References

  1. 1.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell 11(6), 567–585 (1989)zbMATHCrossRefGoogle Scholar
  2. 2.
    Evans, A.C., Dai, W., Collins, L., Neelin, P., Marrett, S.: Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis. In: Proc. SPIE, vol. 1445, pp. 236–246 (1991)Google Scholar
  3. 3.
    Goshtasby, A.: Ragistration of images with geometric distortions. IEEE Trans. Geosci. Remote Sens. 26(1), 60–64 (1988)CrossRefGoogle Scholar
  4. 4.
    Goshtasby, A.: Image registration by local approximation methods. Image and Vision Computing 6, 255–261 (1988)CrossRefGoogle Scholar
  5. 5.
    Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 4, 389–396 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Soligon, O., Mehaute, A.L., Roux, C.: Facial expressions simulation with Radial Basis Functions. International Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging, 233–236 (1997)Google Scholar
  7. 7.
    Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis function with compact support for elastic registration of medical images. Image and Vision Computing 19, 87–96 (2001)CrossRefGoogle Scholar
  8. 8.
    Arad, N., Reisfled, D.: Image Warping using few anchor points and radial functions. Computer Graphics Forum 14(1), 35–46 (1995)CrossRefGoogle Scholar
  9. 9.
    Fornberg, B., Larsson, E., Wright, G.: A new class of oscillatory radial basis functions. Comput. Math. Appl. 51, 1209–1222 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Eickhoff, R., Ruckert, U.: Enhancing Fault Tolerance of Radial Basis Functions. IEEE Transactions on systems, Man and Cybernetics 35, 928–947 (2005)CrossRefGoogle Scholar
  11. 11.
    Golberg, M.A., Chen, C.S., Bowman, H.: Some recent results and proposals for the use of radial basis functions in the BEM. Engineering Analysis with Boundary Elements 23, 285–296 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Šarler, B.: A radial basis function collocation approach in computational fluid dynamics. Computer Modeling in Engineering & Sciences 7, 185–193 (2005)Google Scholar
  13. 13.
    Peng, W., Tong, R., Qian, G., Dong, J.: A Local Registration Approach of Medical Images with Niche Genetic Algorithm. In: 10th International Conference on Computer Supported Cooperative Work in Design, pp.1–6 (2006)Google Scholar
  14. 14.
    Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations incorporating rigid structures. Computer Vision and Image Understanding 66(2), 223–232 (1997)CrossRefGoogle Scholar
  15. 15.
    Ruprecht, D., Muller, H.: Free form deformation with scattered data interpolation method. Computing Supplementum 8, 261–281 (1993)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Asif Masood
    • 1
  • Adil Masood Siddiqui
    • 2
  • Muhammad Saleem
    • 2
  1. 1.Department of Computer Science and Engineering, University of Engineering and Technology, LahorePakistan
  2. 2.Department of Electrical Engineering, University of Engineering and Technology, LahorePakistan

Personalised recommendations