A New Approach for Fingerprint Verification Based on Wide Baseline Matching Using Local Interest Points and Descriptors

  • Javier Ruiz-del-Solar
  • Patricio Loncomilla
  • Christ Devia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


In this article is proposed a new approach to automatic fingerprint verification that is not based on the standard ridge-minutiae-based framework, but in a general-purpose wide baseline matching methodology. Instead of detecting and matching the standard structural features, in the proposed approach local interest points are detected in the fingerprint, then local descriptors are computed in the neighborhood of these points, and afterwards these descriptors are compared using local and global matching procedures. The final verification is carried out by a Bayes classifier. It is important to remark that the local interest points do not correspond to minutiae or singular points, but to local maxima in a scale-space representation of the fingerprint images. The proposed system has 4 variants that are validated using the FVC2004 test protocol. The best variant, which uses an enhanced fingerprint image, SDoG interest points and SIFT descriptors, achieves a FRR of 20.9% and a FAR of 5.7% in the FVC2004-DB1 test database, without using any minutia or singular points’ information.


Fingerprint verification Wide Baseline Matching SIFT 


  1. 1.
    Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Machine Intell 24(7), 905–919 (2002)CrossRefGoogle Scholar
  2. 2.
    Cappelli, R., Maio, D., Maltoni, D., Wayman, J., Jain, A.K.: Performance evaluation of fingerprint verification systems. IEEE Trans. Pattern Anal. Machine Intell 28(1), 3–18 (2006)CrossRefGoogle Scholar
  3. 3.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous Object Recognition and Segmentation by Image Exploration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 40–54. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vision Conf., Manchester, UK, pp. 147–151 (1998)Google Scholar
  5. 5.
    Lee, H.C., Lee, H.C.G.: Advances in Fingerpint Tecnology. Elsevier, NY (1991)Google Scholar
  6. 6.
    Lowe, D.: Local feature view clustering for 3D object recognition. In: Lowe, D. (ed.) IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 682–688 (2001)Google Scholar
  7. 7.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Loncomilla, P., Ruiz-del-Solar, J.: Gaze Direction Determination of Opponents and Teammates in Robot Soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 230–242. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Loncomilla, P., Ruiz-del-Solar, J.: Improving SIFT-based Object Recognition for Robot Applications. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1084–1092. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Loncomilla, P., Ruiz-del-Solar, J.: A Fast Probabilistic Model for Hypothesis Rejection in SIFT-Based Object Recognition. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 696–705. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Ruiz-del-Solar, J., Loncomilla, P., Vallejos, P.: An Automated Refereeing and Analysis Tool for the Four-Legged League. LNCS (2006)Google Scholar
  12. 12.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. Int. Journal of Computer Vision 60(1), 63–96 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Machine Intell 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  15. 15.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A Comparison of Affine Region Detectors. Int. Journal of Computer Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  16. 16.
    Ross, A., Dass, S., Jain, A.K.: Fingerprint warping using ridge curve correspondences. IEEE Trans. Pattern Anal. Machine Intell 28(1), 19–30 (2006)CrossRefGoogle Scholar
  17. 17.
    Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Computer Vision and Image Understanding 92(2-3), 236–264 (2003)CrossRefGoogle Scholar
  18. 18.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Machine Intell 19(5), 530–534 (1997)CrossRefGoogle Scholar
  19. 19.
    Se, S., Lowe, D., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int. Journal of Robotics Research 21(8), 735–758 (2002)CrossRefGoogle Scholar
  20. 20.
    Vallejos, P.: Detection and tracking of people and objects in motion using mobile cameras. Master Thesis, Universidad de Chile (2007)Google Scholar
  21. 21.
    Kovacs-Vajna, Z.M.: A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. Pattern Anal. Machine Intell 22(11), 1266–1276 (2000)CrossRefGoogle Scholar
  22. 22.
    Weka: Weka website. Available in November 2006 in:
  23. 23.
    FVS 2003, Fingerprint Verification System,

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Javier Ruiz-del-Solar
    • 1
  • Patricio Loncomilla
    • 1
  • Christ Devia
    • 1
  1. 1.Department of Electrical Engineering, Universidad de Chile 

Personalised recommendations