Spatial Visualization of the Heart in Case of Ectopic Beats and Fibrillation

  • Sándor M. Szilágyi
  • László Szilágyi
  • Zoltán Benyó
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


This paper presents a dynamic heart model based on a parallelized space-time adaptive mesh refinement algorithm (AMRA). The spatial and temporal simulation method of the anisotropic excitable media has to achieve great performance in distributed processing environment. The accuracy and efficiency of the algorithm was tested for anisotropic and inhomogeneous 3D domains using ten Tusscher’s and Nygen’s cardiac cell models. During propagation of depolarization wave, the kinetic, compositional and rotational anisotrophy is included in the tissue, organ and torso model. The generated inverse ECG with conventional and parallelized algorithm has the same quality, but a speedup of factor 200 can be reached using AMRA modeling and single instruction multiple data (SIMD) programming of the video cards. These results suggest that a powerful personal computer will be able to perform a one-second long simulation of the spatial electrical dynamics of the heart in approximately five minutes.


spatial visualization heart wall movement analysis parallel processing 


  1. 1.
    Antzelevitch, C., Shimizu, W., Yan, G.-X., Sicouri, S., Weissenburger, J., Nesterenko, V.V., Burashnikov, A., Di Diego, J., Saffitz, J., Thomas, G.P.: The M cell: Its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol. 10, 1124–1152 (1999)CrossRefGoogle Scholar
  2. 2.
    Cherry, E.M., Greenside, H.S., Henriquez, C.S.: A Space-Time Adaptive Method for Simulating Complex Cardiac Dynamics. Phys. Rev. Lett. 84, 1343–1346 (2000)CrossRefGoogle Scholar
  3. 3.
    Cherry, E.M., Greenside, H.S., Henriquez, C.S.: Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos 13, 853–865 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Courtemanche, M.: Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. Chaos 6, 579–600 (1996)CrossRefGoogle Scholar
  5. 5.
    Dumoulin, S.O., Hoge, R.D., Baker Jr., C.L., Hess, R.F., Achtman, R.L., Evans, A.C.: Automatic volumetric segmentation of human visual retinotopic cortex. Neuroimage 18, 576–587 (2003)CrossRefGoogle Scholar
  6. 6.
    Fast, V.G., Rohr, S., Gillis, A.M., Kléber, A.G.: Activation of Cardiac Tissue by Extracellular Electrical Shocks: Formation of ’Secondary Sources’ at Intercellular Clefts in Monolayers of Cultured Myocytes. Circ. Res. 82, 375–385 (1998)Google Scholar
  7. 7.
    Godefroid, P., Khurshid, S.: Exploring Very Large State Spaces Using Genetic Algorithms. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 266–280. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Harrild, D.M., Henriquez, C.S.: A Computer Model of Normal Conduction in the Human Atria. Circul. Res. 87, 25–36 (2000)Google Scholar
  9. 9.
    Nygren, A., Fiset, C., Firek, L., Clark, J.W., Lindblad, D.S., Clark, R.B., Giles, W.R.: Mathematical Model of an Adult Human Atria Cell: The Role of K+ Currents in Repolarization. Circul. Res. 82, 63–81 (1998)Google Scholar
  10. 10.
    Quan, W., Evans, S.J.: Efficient Integration of a realistic Two-dimensional Cardiac Tissue Model by Domain Decomposition. IEEE Trans. Biomed. Eng. 45, 372–384 (1998)CrossRefGoogle Scholar
  11. 11.
    Panfilov, A.V.: Three-dimensional organization of electrical turbulence in the heart. Phys. Rev. E 59, R6251–R6254 (1999)CrossRefGoogle Scholar
  12. 12.
    Szilágyi, S.M., Szilágyi, L., Benyó, Z.: Spatial Heart Simulation and Analysis Using Unified Neural Network. Ser. Adv. Soft Comput. 41, 346–354 (2007)Google Scholar
  13. 13.
    ten Tusscher, K.H.W.J., Bernus, O., Hren, R., Panfilov, A.V.: Comparison of electrophysiological models for human ventricular cells and tissues. Prog. Biophys. Mol. Biol. 90, 326–345 (2006)CrossRefGoogle Scholar
  14. 14.
    ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Amer. J. Physiol. Heart. Circ. Physiol. 286, H1573–H1589 (2004)CrossRefGoogle Scholar
  15. 15.
    Winfree, A.T.: Electrical turbulence in three-dimensional heart muscle. Science 266, 1003–1006 (1994)CrossRefGoogle Scholar
  16. 16.
    Winslow, R.L., Hinch, R., Greenstein, J.L.: ICCS 2000. Lect. Notes Math, vol. 1867, pp. 97–131 (2005)Google Scholar
  17. 17.
    Winslow, R.L., Scollan, D.F., Holmes, A., Yung, C.K., Zhang, J., Jafri, M.S.: Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ. Ann. Rev. Biomed Eng. 2, 119–155 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sándor M. Szilágyi
    • 1
    • 2
  • László Szilágyi
    • 1
    • 2
  • Zoltán Benyó
    • 2
  1. 1.Sapientia - Hungarian Science University of Transylvania, Faculty of Technical and Human Science, Târgu-MureşRomania
  2. 2.Budapest University of Technology and Economics, Dept. of Control Engineering and Information Technology, BudapestHungary

Personalised recommendations