Motion Estimation Applied to Reconstruct Undersampled Dynamic MRI

  • Claudia Prieto
  • Marcelo Guarini
  • Joseph Hajnal
  • Pablo Irarrazaval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


Magnetic Resonance Imaging (MRI) has become an important tool for dynamic clinical studies. Regrettably, the long acquisition time is still a challenge in dynamic MRI. Several undersampled reconstruction techniques have been developed to speed up the acquisition without significantly compromising image quality. Most of these methods are based on modeling the pixel intensity changes. Recently, we introduced a new approach based on the motion estimation of each object element (obel, a piece of tissue). Although the method works well, the outcome is a trade off between the maximum undersampling factor and the motion estimation accuracy. In this work we propose to improve its performance through the use of additional data from multiple coils acquisition. Preliminary results on cardiac MRI show that further undersampling and/or improved reconstruction accuracy is achieved using this technique. Furthermore, an approximation of the vector field of motion is obtained. This method is appropriate for sequences where the obels’ intensity through time is nearly constant.


motion estimation MRI dynamic images undersampling 


  1. 1.
    Abd-Elmoniem, K.Z., Osman, N.F., Prince, J.L., Stuber, M.: Three-dimensional magnetic resonance myocardial motion tracking from a single image plane. Magn. Reson. Med. 58, 92–102 (2007)CrossRefGoogle Scholar
  2. 2.
    Sakuma, H.: Magnetic resonance imaging for ischemic heart disease. J. Magn. Reson. Imaging. 26, 3–13 (2007)CrossRefGoogle Scholar
  3. 3.
    Raman, V.K., Lederman, R.J.: Interventional cardiovascular magnetic resonance imaging. Trends Cardiovasc. Med. 17, 196–202 (2007)CrossRefGoogle Scholar
  4. 4.
    Gupta, V., Khandelwal, N., Mathuria, S., Singh, P., Pathak, A., Suri, S.: Dynamic magnetic resonance imaging evaluation of craniovertebral junction abnormalities. J. Comput. Assist. Tomogr. 31, 354–359 (2007)CrossRefGoogle Scholar
  5. 5.
    Xiang, Q.S., Henkelman, R.M.: k-space description for MR imaging of dynamic objects. Magn. Reson. Med. 29, 422–428 (1993)CrossRefGoogle Scholar
  6. 6.
    Jones, R.A., Haraldseth, O., Muller, T.B., Rinck, P.A., Oksendal, A.N.: k-space substitution: a novel dynamic imaging technique. Magn. Reson. Med. 29, 830–834 (1993)CrossRefGoogle Scholar
  7. 7.
    van Vaals, J.J., Brummer, M.E., Dixon, W.T., Tuithof, H.H., Engels, H., Nelson, R.C., Gerety, B.M., Chezmar, J.L., den Boer, J.A.: Keyhole method for accelerating imaging of contrast agent uptake. J. Magn. Reson. Imaging 3, 671–675 (1993)CrossRefGoogle Scholar
  8. 8.
    Hu, X., Parrish, T.: Reduction of field of view for dynamic imaging. Magn. Reson. Med. 31, 691–694 (1994)CrossRefGoogle Scholar
  9. 9.
    Madore, B., Glover, G.H., Pelc, N.J.: Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn. Reson. Med. 42, 813–828 (1999)CrossRefGoogle Scholar
  10. 10.
    Tsao, J., Boesinger, P., Pruessmann, K.P.: k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn. Reson. Med. 50, 1031–1042 (2003)CrossRefGoogle Scholar
  11. 11.
    Irarrazaval, P., Bourbetakh, R., Razavi, R., Hill, D.: Dynamic three-dimensional undersampled data reconstruction employing temporal registration. Magn. Reson. Med. 54, 1207–1215 (2005)CrossRefGoogle Scholar
  12. 12.
    Prieto, C., Batchelor, P., Hill, D., Hajnal, J., Guarini, M., Irarrazaval, P.: Reconstruction of undersampled dynamic images by modeling the motion of objects elements. Magn. Reson. Med. 57, 939–949 (2007)CrossRefGoogle Scholar
  13. 13.
    Pruessmann, K.P., Werger, M., Scheidegger, M.B., Boesinger, P.: SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952–962 (1999)CrossRefGoogle Scholar
  14. 14.
    Sodickson, D.K., Mannin, W.J.: Simultaneous acquisition of spatial harmonics (SMASH): ultra-fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38, 591–603 (1997)CrossRefGoogle Scholar
  15. 15.
    Batchelor, P.G., Atkinson, D., Irarrazaval, P., Hill, D.L.G., Hajnal, J., Larkman, D.: Matrix description of genearal motion correction applied to multishot images. Magn. Reson. Med. 54, 1273–1280 (2005)CrossRefGoogle Scholar
  16. 16.
    d’Arcy, J.A., Collins, D.J., Rowland, I.J., Padhani, A.R., Leach, M.O.: Applications of sliding window reconstruction with Cartesin sampling for dynamic contrast enhancement MRI. NMR. BioMed. 15, 174–183 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Claudia Prieto
    • 1
  • Marcelo Guarini
    • 1
  • Joseph Hajnal
    • 2
  • Pablo Irarrazaval
    • 1
  1. 1.Pontificia Universidad Católica de Chile, Departamento de Ingenieria Eléctrica, Vicuna Mackenna 4860, Email: pim@ing.puc.clChile
  2. 2.Hammersmith Hospital, Imperial College London, Du Cane Road W12 ONNUK

Personalised recommendations