Proposition and Comparison of Catadioptric Homography Estimation Methods

  • Christophe Simler
  • Cédric Demonceaux
  • Pascal Vasseur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)

Abstract

Homographies are widely used in tasks like camera calibration, tracking, mosaicing or motion estimation and numerous linear and non linear methods for homography estimation have been proposed in the case of classical cameras. Recently, some works have also proved the validity of homography for catadioptric cameras but only a linear estimator has been proposed. In order to improve the estimation based on correspondence features, we suggest in this article some non linear estimators for catadioptric sensors. Catadioptric camera motion estimation from a sequence of a planar scene is the proposed application for the evaluation and the comparison of these estimation methods. Experimental results with simulated and real sequences show that non linear methods are more accurate.

Keywords

Omnidirectional Vision Homography estimation 

References

  1. 1.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1981)CrossRefGoogle Scholar
  2. 2.
    Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell 19(6), 580–593 (1997)CrossRefGoogle Scholar
  3. 3.
    Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. Int. J. Comput. Vision 27(2), 161–195 (1998)CrossRefGoogle Scholar
  4. 4.
    Tsai, R., Huang, T., Zhu, W.: Estimating 3-d motion parameters of a rigid planar patch ii: Singular value decomposition. ASSP 30(8), 525–533 (1982)Google Scholar
  5. 5.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: IIEEE Int. Conf. on Computer Vision, pp. 666–673. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Brown, M., Lowe, D.G.: Recognising panoramas. In: IEEE Int. Conf. on Computer Vision, vol. 02, pp. 1218–1225. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  7. 7.
    Benhimane, S., Malis, E.: Homography-based 2d visual servoing. In: IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  8. 8.
    Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 251–258. ACM Press/Addison-Wesley Publishing Co, New York (1997)CrossRefGoogle Scholar
  9. 9.
    Jain, P.K.: Homography estimation from planar contours. In: Third Int. Symp. on 3D Data Processing, Visualisation and Transmission, pp. 877–884 (2006)Google Scholar
  10. 10.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  11. 11.
    Faugeras, O.: Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge (1993)Google Scholar
  12. 12.
    Lhuillier, M.: Automatic structure and motion using a catadioptric camera. In: Proceedings of 6th Workshop on Omnidirectional Vision OMNIVIS 2005 (2005)Google Scholar
  13. 13.
    Makadia, A., Geyer, C., Sastry, S., Daniilidis, K.: Radon-based structure from motion without correspondences. In: CVPR, pp. 796–803. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  14. 14.
    Geyer, C., Daniilidis, K.: Mirrors in motion: Epipolar geometry and motion estimation. In: IEEE Int. Conf. on Computer Vision, pp. 766–773. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  15. 15.
    Benhimane, S., Malis, E.: A new approach to vision-based robot control with omni-directional cameras. In: IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  16. 16.
    Mei, C., Benhimane, S., Malis, E., Rives, P.: Homography-based tracking for central catadioptric cameras. In: IROS (2006)Google Scholar
  17. 17.
    Mei, C., Rives, P.: Single view point omnidirectional camera calibration from planar grids. In: IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  18. 18.
    Barreto, J.: A unifying geometric representation for central projection systems. Comput. Vis. Image Underst. 103(3), 208–217 (2006)CrossRefGoogle Scholar
  19. 19.
    Kosecka, J., Ma, Y., Sastry, S.: Optimization criteria, sensitivity and robustness of motion and structure estimation. In: ICCV 1999: Proceedings of the International Workshop on Vision Algorithms, pp. 166–182. Springer, London, UK (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christophe Simler
    • 1
  • Cédric Demonceaux
    • 1
  • Pascal Vasseur
    • 1
  1. 1.C.R.E.A, E.A. 3299, 7, rue du moulin neuf, 80000 AmiensFrance

Personalised recommendations