Using the Orthographic Projection Model to Approximate the Perspective Projection Model for 3D Facial Reconstruction

  • Jin-Yi Wu
  • Jenn-Jier James Lien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


This study develops a 3D facial reconstruction system, which consists of five modules, using the orthographic projection model to approximate the perspective projection model. The first module identifies a number of feature points on the face and tracks these feature points over a sequence of facial images by the optical flow technique. The second module applies the factorization method to the orthographic model to reconstruct a 3D human face. The facial images are acquired using a pinhole camera, which are based on a perspective projection model. However, the face is reconstructed using an orthographic projection model. To compensate for the difference between these two models, the third module implements a simple and efficient method for approximating the perspective projection model. The fourth module overcomes the missing point problem, commonly arising in 3D reconstruction applications. Finally, the fifth module implements a smoothing process for the 3D surface by interpolating additional vertices.


3D reconstruction factorization orthographic projection and perspective projection 


  1. 1.
    Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces, pp. 187–194. ACM Press, New York (1999)Google Scholar
  2. 2.
    Brand, M.: A Direct Method for 3D Factorization of Nonrigid Motion Observed in 2D. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 122–128 (2005)Google Scholar
  3. 3.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering Non-Rigid 3D Shape from Image Streams. In: Proc. IEEE Conf. on CVPR, pp. 690–696. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  4. 4.
    Dwyer, R.A.: A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulation. Algorithmica 2, 137–151 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fua, P.: Regularized Bundle-Adjustment to Model Heads from Image Sequences without Calibration Data. International Journal of Computer Vision (IJCV), 153–171 (2000)Google Scholar
  6. 6.
    Hassanpour, R., Atalay, V.: Delaunay Triangulation Based 3D Human Face Modeling from Uncalibrated Images. In: CVPR Workshop, p. 75 (2004)Google Scholar
  7. 7.
    Horprasert, T., Yacoob, Y., Davis, L.S.: Computing 3-D Head Orientation from a Monocular Image Sequence. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 242–247. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  8. 8.
    Jin, H., Soatto, S., Yezzi, A.: Multi-view Stereo Beyond Lambert. IEEE Conf. CVPR 1, 171–178 (2003)Google Scholar
  9. 9.
    Lee, Y.C., Terzopoulos, D., Waters, K.: Constructing Physics-Based Facial Models of Individuals. In: Proc. of Graphics Interface, pp. 1–8 (1993)Google Scholar
  10. 10.
    Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proc. of DARPA Image Understanding, pp. 121–130 (1981)Google Scholar
  11. 11.
    Mouragnon, E., Dekeyser, F., Sayd, P., Lhuillier, M., Dhome, M.: Real Time Localization and 3D Reconstruction. IEEE Conf. CVPR 1, 363–370 (2006)Google Scholar
  12. 12.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: 3D Reconstruction of Complex Structures with Bundle Adjustment: an Incremental Approach. In: Proc. IEEE International Conference on Robotics and Automation, pp. 3055–3061. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  13. 13.
    Poelman, C., Kanade, T.: A Paraperspective Factorization Method for Shape and Motion Recovery. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 19(3), 206–218 (1997)CrossRefGoogle Scholar
  14. 14.
    Shan, Y., Liu, Z., Zhang, Z.: Model-Based Bundle Adjustment with Application to Face Modeling. In: Proc. IEEE International Conference on Computer Vision (ICCV), pp. 644–751. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  15. 15.
    Shum, H., Ke, Q., Zhang, Z.: Efficient Bundle Adjustment with Virtual Key Frames: A Hierarchical Approach to Multi-Frame Structure from Motion. IEEE Conf. CVPR 2, 538–543 (1999)Google Scholar
  16. 16.
    Soatto, S., Yezzi, A., Jin, H.: Tales of Shape and Radiance in Multiview Stereo. In: IEEE International Conf. on Computer Vision (ICCV), pp. 974–981. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  17. 17.
    Tankus, A., Sochen, N., Yeshurun, Y.: A New Perspective [on] Shape-from-Shading. IEEE ICCV 2, 862–869 (2003)Google Scholar
  18. 18.
    Tomasi, C., Kanade, T.: Shape and Motion from Image Streams under Orthography: a Factorization Method. IJCV 9(2), 137–154 (1992)CrossRefGoogle Scholar
  19. 19.
    Torresani, L., Yang, D., Alexander, J., Bregler, C.: Tracking and Modeling Non-Rigid Objects with Rank Constraints. In: IEEE Conf. CVPR, pp. 493–500. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  20. 20.
    Treuille, A., Hertzmann, A., Seitz, S.: Example-Based Stereo with General BRDFs. In: European Conference on Computer Vision (ECCV), vol. 2, pp. 457–469 (2004)Google Scholar
  21. 21.
    Triggs, B.: Factorization Methods for Projective Structure and Motion. In: IEEE Conf. CVPR, pp. 845–851. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  22. 22.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzibbon, A.W.: Bundle Adjustment - A Modern Synthesis. In: Proc. of the International Workshop on Vision Algorithms: Theory and Practice, pp. 298–372 (1999)Google Scholar
  23. 23.
    Twu, J.T., Lien, J.J.: Estimation of Facial Control-Point Locations. In: Proc. in the Computer Vision, Graphics, and Image Processing (CVGIP), pp.E1–3 (2004)Google Scholar
  24. 24.
    Wang, T.H., Lien, J.J.: Rigid and Non-Rigid Motion Separation Using 3D Model. In: Proc. in the CVGIP, pp. A2–5 (2004)Google Scholar
  25. 25.
    Xiao, J., Chai, J.X., Kanade, T.: A Closed-Form Solution to Non-Rigid Shape and Motion Recovery. ECCV, pp. 573–587 (2004)Google Scholar
  26. 26.
    Xiao, J., Kanade, T.: Uncalibrated Perspective Reconstruction of Deformable Structures. ICCV 2, 1075–1082 (2005)Google Scholar
  27. 27.
    Zhang, Z., Shan, Y.: Incremental Motion Estimation through Modified Bundle Adjustment. International Conf. on Image Processing 3, 343–346 (2003)Google Scholar
  28. 28.
    Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape from Shading: A Survey. IEEE Trans. on PAMI 21(8), 690–705 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jin-Yi Wu
    • 1
  • Jenn-Jier James Lien
    • 1
  1. 1.Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 70101, TaiwanROC

Personalised recommendations