Online Multiple View Computation for Autostereoscopic Display

  • Vincent Nozick
  • Hideo Saito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


This paper presents a new online Video-Based Rendering method that creates simultaneously multiple views at every new frame. Our system is especially designed for communication between mobile phones using autostereoscopic display and computers. The new views are computed from 4 webcams connected to a computer and are compressed in order to be transfered to the mobile phone. Thanks to GPU programming, our method provides up to 16 images of the scene in real-time. The use of both GPU and CPU makes our method work on only one consumer grade computer.


video-based rendering autostereoscopic view interpolation 


  1. 1.
    Okoshi, T.: Three-Dimensional Imaging Techniques. Academic Press, San Diego (1977)Google Scholar
  2. 2.
    Dodgson, N.A.: Autostereoscopic 3D Displays. Computer 38(8), 31–36 (2005)CrossRefGoogle Scholar
  3. 3.
    Harrold, J., Woodgate, G.: Autostereoscopic display technology for mobile 3DTV applications. In: Proc. of the SPIE, vol. 6490 (2007)Google Scholar
  4. 4.
    Goldlucke, B., Magnor, M.A., Wilburn, B.: Hardware accelerated Dynamic Light Field Rendering. Modelling and Visualization VMV 2002, Germany, 455–462 (2002)Google Scholar
  5. 5.
    Magnor, M.A.: Video-Based Rendering. A K Peters Ltd (2005)Google Scholar
  6. 6.
    Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-Based Visual Hulls. ACM SIGGRAPH 2000, 369–374 (2000)Google Scholar
  7. 7.
    Li, M., Magnor, M.A., Seidel, H.P.: Online Accelerated Rendering of Visual Hulls in Real Scenes. In: International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2003), pp. 290–297 (2003)Google Scholar
  8. 8.
    Li, M., Magnor, M.A., Seidel, H.P.: Hardware-Accelerated Visual Hull Reconstruction and Rendering. Graphics Interface GI 2003, Canada, 65–71 (2003)Google Scholar
  9. 9.
    Yang, J.C., Everett, M., Buehler, C., McMillan, L.: A real-time distributed light field camera. In: 13th Eurographics workshop on Rendering, Italy, pp. 77–86 (2002)Google Scholar
  10. 10.
    Collins, R.T.: A Space-Sweep Approach to True Multi-Image. Computer Vision and Pattern Recognition Conf., 358–363 (1996)Google Scholar
  11. 11.
    Yang, R., Welch, G., Bishop, G.: Real-Time Consensus-Based Scene Reconstruction using Commodity Graphics Hardware. Pacific Graphics, 225–234 (2002)Google Scholar
  12. 12.
    Geys, I., De Roeck, S., Van Gool, L.: The Augmented Auditorium: Fast Interpolated and Augmented View Generation. In: European Conference on Visual Media Production, CVMP 2005, pp. 92–101 (2005)Google Scholar
  13. 13.
    Billinghurst, M., Campbell, S., Chinthammit, W., Hendrickson, D., Poupyrev, I., Takahashi, K., Kato, H.: Magic book: Exploring transitions in collaborative ar interfaces. SIGGRAPH 2000  (2000)Google Scholar
  14. 14.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)CrossRefGoogle Scholar
  15. 15.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge, UK (2004)zbMATHGoogle Scholar
  16. 16.
    Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques For High-Performance Graphics And General-Purpose Computation. Addison-Wesley Professional, Reading (2005)Google Scholar
  17. 17.
    Kalva, H., Christodoulou, L., Mayron, L., Marques, O., Furht, B.: Challenges and opportunities in video coding for 3D TV. In: IEEE International Conference on Multimedia & Expo (ICME), Canada, pp. 1689–1692 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vincent Nozick
    • 1
  • Hideo Saito
    • 1
  1. 1.Graduate School of Science and Technology, Keio UniversityJapan

Personalised recommendations