Image-Based Refocusing by 3D Filtering

  • Akira Kubota
  • Kazuya Kodama
  • Yoshinori Hatori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


This paper presents a novel spatial-invariant filtering method for rendering focus effects without aliasing artifacts from undersampled light fields. The presented method does not require any scene analysis such as depth estimation and feature matching. First, we generate a series of images focused on multiple depths by using the conventional synthetic aperture reconstruction method and treat them as a 3D image. Second we convert it to the alias-free 3D image. This paper shows this conversion can be achieved simply by a 3D filtering in the frequency domain. The proposed filter can also produce depth-of-field effects.


Refocus Light Field 3D Filtering Aliasing 


  1. 1.
    Stewart, J., Yu, J., Gortler, S.J., McMillan, L.: A new reconstruction filter for undersampled light fields. In: Eurographics Symposium on Rendering 2003, EGSR 2003, pp. 150–156 (2003)Google Scholar
  2. 2.
    Ng, R., Levoy, M., Bredif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light Field Photography with Hand-held Plenoptic Camera. Stanford Tech Report CTSR,2005-02(2005)Google Scholar
  3. 3.
    Ng, R.: Fourier slice photography. SIGGRAPH 2005, 735–744 (2005)Google Scholar
  4. 4.
    Isaksen, A., McMillan, L., Gortler, S.J.: Dynamically reparameterized light fields. SIGGRAPH 2000, 297–306 (2000)Google Scholar
  5. 5.
    Haeberli, P.E., Akeley, K.: The accumulation buffer: Hardware support for high-quality rendering. SIGGRAPH 1990, 309–318 (1990)Google Scholar
  6. 6.
    Levoy, M., Hanrahan, P.: Light field rendering. SIGGRAPH 1996, 31–42 (1996)Google Scholar
  7. 7.
    Chai, J.-X., Tong, X., Chany, S.-C., Shum, H.-Y.: Plenoptic sampling. SIGGRAPH 2000, 307–318 (2000)Google Scholar
  8. 8.
    Georgeiv, T., Zheng, K.C., Curless, B., Salesin, D., Nayar, S., Intwala, C.: Spatio-Angular Resolution Tradeoff in Integral Photography. In: Eurographics Symposium on Rendering, EGSR 2006, pp. 263–272 (2006)Google Scholar
  9. 9.
    Castleman, K.R.: Digital image processing, pp. 566–569. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  10. 10.
    Sarder, P., Nehorai, A.: Deconvolution method for 3-D fluorescence microscopy images. Signal processing magazine 23(3), 32–45 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Akira Kubota
    • 1
  • Kazuya Kodama
    • 2
  • Yoshinori Hatori
    • 1
  1. 1.Interdisciplinary Graduate School of Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502Japan
  2. 2.Research Organization of Information and Systems, National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430Japan

Personalised recommendations