Automatic Multiple Visual Inspection on Non-calibrated Image Sequence with Intermediate Classifier Block

  • Miguel Carrasco
  • Domingo Mery
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)

Abstract

Automated inspection using multiple views (AMVI) has been recently developed to automatically detect flaws in manufactured objects. The principal idea of this strategy is that, unlike the noise that appears randomly in images, only the flaws remain stable in a sequence of images because they remain in their position relative to the movement of the object being analyzed. This investi- gation proposes a new strategy, based on the detection of flaws in a non- calibrated sequence of images. The method uses a scheme of elimination of potential flaws in two and three views. To improve the performance, intermediate blocks are introduced that eliminate those hypothetical flaws that are regular regions and real flaws. Use is made of images captured in a non-calibrated vision system, so there are no optical, geometric and noise disturbances in the image, forcing the proposed method to be robust, so that it can be applied in industry as a quality control method in non-calibrated vision systems. the results show that it is possible to detect the real flaws and at the same time decrease most of the false alarms.

Keywords

computer vision multiple view geometry automated visual inspection defect detection industrial applications 

References

  1. 1.
    Malamas, E.N., Petrakis, E.G., Zervakis, M.: A survey on industrial vision systems, applications and tools. Image and Vision Computing 21(2), 171–188 (2003)CrossRefGoogle Scholar
  2. 2.
    Newman, T.S., Jain, A.K.: A survey of automated visual inspection. Computer Vision and Image Understanding 61(2), 231–262 (1995)CrossRefGoogle Scholar
  3. 3.
    Chin, R.T.: Automated visual inspection: 1981-1987. Computer Vision Graphics Image Process 41, 346–381 (1988)CrossRefGoogle Scholar
  4. 4.
    Nakagawa, M., Ohnishi, K., Nakayasu, H.: Human-oriented image recognition for industrial inspection system. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 52–56. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  5. 5.
    Brandt, F.: The use of x-ray inspection techniques to improve quality and reduce costs. The eJournal of Nondestructive Testing and Ultrasonics 5(5) (2000)Google Scholar
  6. 6.
    Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robotics and Automation 18(6), 890–901 (2002)CrossRefGoogle Scholar
  7. 7.
    Mery, D., Carrasco, M.: Automated multiple view inspection based on uncalibrated image sequence. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 1238–1247. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Carrasco, M., Mery, D.: Automated visual inspection using trifocal analysis in an uncalibrated sequence of images. Materials Evaluation 64(9), 900–906 (2006)Google Scholar
  9. 9.
    Pizarro, L., Mery, D., Delpiano, R., Carrasco, M.: Robust automated multiple view inspection. Pattern Analysis and ApplicationsGoogle Scholar
  10. 10.
    Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 725–732. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 1st edn. Cambridge University Press, Cambridge, UK (2000)MATHGoogle Scholar
  12. 12.
    Faugueras, O., Luong, Q.: The geometry of multiples images. MIT Press, Cambridge (2001)Google Scholar
  13. 13.
    Mery, D.: High contrast pixels: a new feature for defect detection in x-ray testing. Insight 46(12), 751–753 (2006)CrossRefGoogle Scholar
  14. 14.
    Mery, D.: Exploiting multiple view geometry in x-ray testing: Part I, theory. Materials Evaluation 61(11), 1226–1233 (2003)Google Scholar
  15. 15.
    Dunn, O.J., Clark, V.A.: Applied statistics: analysis of variance and regression. Wiley, Chichester (1974)MATHGoogle Scholar
  16. 16.
    Haralick, R., Shapiro, L.: Computer and Robot Vision. Addison-Wesley Publishing Co., New York (1992)Google Scholar
  17. 17.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 2nd edn. PWS Publishing, Pacific Grove, CA (1999)Google Scholar
  18. 18.
    Persoon, E., Fu, K.S.: Shape discrimination using fourier descriptors. IEEE Transactions on System, Man and Cybernetics, 170–179 (1977)Google Scholar
  19. 19.
    Castleman, K.R.: Digital Image Processing. Prentice-Hall, New Jersey (1996)Google Scholar
  20. 20.
    Chen, Z., Wu, C., Shen, P., Liu, Y., Quan, L.: A robust algorithhm to estimate the fundamental matrix. Patter Recognition Letters 21, 851–861 (2000)CrossRefGoogle Scholar
  21. 21.
    Shashua, A., Werman, M.: Trilinearity of three perspective views and its associated tensor. In: 5th International Conference on Computer Vision (ICCV 1995), Boston MA, p. 920 (1995)Google Scholar
  22. 22.
    Polikar, R.: Ensemble systems in decision making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)CrossRefGoogle Scholar
  23. 23.
    Mitchel, T.M.: Machine Learning. McGraw-Hill, Boston (1997)Google Scholar
  24. 24.
    Egan, J.: Signal detection theory and ROC analysis. Academic Press, New York (1975)Google Scholar
  25. 25.
    Duda, R.O., Hart, P.E., Stork, D.G: Pattern Classification, 2nd edn. John Wiley & Sons, Inc., New York (2001)MATHGoogle Scholar
  26. 26.
    Stearns, S.D.: On selecting features for patterns classifiers. In: IAPR International Conference on Pattern Recognition, pp. 71–75 (1976)Google Scholar
  27. 27.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM Journal of Optimization 9(1), 112–147 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Miguel Carrasco
    • 1
  • Domingo Mery
    • 1
  1. 1.Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860(143), Santiago de Chile 

Personalised recommendations